
The Libgcrypt Reference Manual
Version 1.4.1

4 January 2008

Werner Koch (wk@gnupg.org)
Moritz Schulte (mo@g10code.com)

mailto:wk@gnupg.org
mailto:mo@g10code.com

This manual is for Libgcrypt (version 1.4.1, 4 January 2008), which is GNU’s library of
cryptographic building blocks.
Copyright c© 2000, 2002, 2003, 2004, 2006, 2007 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.
The text of the license can be found in the section entitled “Copying”.

i

Short Contents

1 Introduction . 1

2 Preparation . 3

3 Generalities . 7

4 Handler Functions . 15

5 Symmetric cryptography . 19

6 Hashing . 27

7 Public Key cryptography (I) . 35

8 Public Key cryptography (II) . 47

9 Random Numbers . 57

10 S-expressions . 59

11 MPI library . 63

12 Prime numbers . 69

13 Utilities . 71

A GNU LESSER GENERAL PUBLIC LICENSE 73

B GNU GENERAL PUBLIC LICENSE . 83

Concept Index . 89

Function and Data Index . 91

ii The Libgcrypt Reference Manual

iii

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features . 1
1.3 Overview . 1

2 Preparation . 3
2.1 Header . 3
2.2 Building sources . 3
2.3 Building sources using Automake . 4
2.4 Initializing the library . 4
2.5 Multi-Threading . 4

3 Generalities . 7
3.1 Controlling the library . 7
3.2 Modules . 9
3.3 Error Handling . 9

3.3.1 Error Values . 10
3.3.2 Error Sources . 11
3.3.3 Error Codes . 12
3.3.4 Error Strings . 14

4 Handler Functions . 15
4.1 Progress handler . 15
4.2 Allocation handler . 16
4.3 Error handler . 16
4.4 Logging handler . 17

5 Symmetric cryptography . 19
5.1 Available ciphers . 19
5.2 Cipher modules . 20
5.3 Available cipher modes . 22
5.4 Working with cipher handles . 22
5.5 General cipher functions . 25

6 Hashing . 27
6.1 Available hash algorithms . 27
6.2 Hash algorithm modules . 28
6.3 Working with hash algorithms . 30

iv The Libgcrypt Reference Manual

7 Public Key cryptography (I) 35
7.1 Available algorithms . 35
7.2 Used S-expressions . 35

7.2.1 RSA key parameters . 35
7.2.2 DSA key parameters . 36
7.2.3 ECC key parameters . 36

7.3 Public key modules . 38
7.4 Cryptographic Functions . 40
7.5 General public-key related Functions . 43

8 Public Key cryptography (II) 47
8.1 Available asymmetric algorithms . 47
8.2 Working with sets of data . 47
8.3 Working with IO objects . 49
8.4 Working with handles . 50
8.5 Working with keys . 50
8.6 Using cryptographic functions . 52
8.7 Handle-independent functions . 55

9 Random Numbers . 57
9.1 Quality of random numbers . 57
9.2 Retrieving random numbers . 57

10 S-expressions . 59
10.1 Data types for S-expressions . 59
10.2 Working with S-expressions . 59

11 MPI library . 63
11.1 Data types . 63
11.2 Basic functions . 63
11.3 MPI formats . 64
11.4 Calculations . 65
11.5 Comparisons . 66
11.6 Bit manipulations . 66
11.7 Miscellaneous . 67

12 Prime numbers . 69
12.1 Generation . 69
12.2 Checking . 69

13 Utilities . 71
13.1 Memory allocation . 71

v

Appendix A GNU LESSER GENERAL
PUBLIC LICENSE . 73
A.0.1 Preamble . 73
A.0.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 74
A.0.3 How to Apply These Terms to Your New Libraries 81

Appendix B GNU GENERAL PUBLIC
LICENSE . 83
B.0.1 Preamble . 83
B.0.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 83
How to Apply These Terms to Your New Programs 88

Concept Index . 89

Function and Data Index . 91

vi The Libgcrypt Reference Manual

Chapter 1: Introduction 1

1 Introduction

Libgcrypt is a library providing cryptographic building blocks.

1.1 Getting Started

This manual documents the Libgcrypt library application programming interface (API). All
functions and data types provided by the library are explained.
The reader is assumed to possess basic knowledge about applied cryptography.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features

Libgcrypt might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
Lesser General Public License (see Appendix A [Library Copying], page 73).
Note, that some parts (which are not needed on a GNU or GNU/Linux system)
are subject to the terms of the GNU General Public License (see Appendix B
[Copying], page 83); please see the README file of the distribution for of list
of these parts.

It encapsulates the low level cryptography
Libgcrypt provides a high level interface to cryptographic building blocks using
an extensible and flexible API.

1.3 Overview

The Libgcrypt library is fully thread-safe, where it makes sense to be thread-safe. Not
thread-safe are some cryptographic functions that modify a certain context stored in han-
dles. If the user really intents to use such functions from different threads on the same
handle, he has to take care of the serialization of such functions himself. If not described
otherwise, every function is thread-safe.

Libgcrypt depends on the library ‘libgpg-error’, which contains common error handling
related code for GnuPG components.

2 The Libgcrypt Reference Manual

Chapter 2: Preparation 3

2 Preparation

To use Libgcrypt, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

2.1 Header

All interfaces (data types and functions) of the library are defined in the header file
‘gcrypt.h’. You must include this in all source files using the library, either directly or
through some other header file, like this:

#include <gcrypt.h>

The name space of Libgcrypt is gcry_* for function and type names and GCRY* for other
symbols. In addition the same name prefixes with one prepended underscore are reserved
for internal use and should never be used by an application. Note that Libgcrypt uses
libgpg-error, which uses gpg_* as name space for function and type names and GPG_* for
other symbols, including all the error codes.
Certain parts of gcrypt.h may be excluded by defining these macros:

GCRYPT_NO_MPI_MACROS
Do not define the shorthand macros mpi_* for gcry_mpi_*.

GCRYPT_NO_DEPRECATED
Do not include defintions for deprecated features.

2.2 Building sources

If you want to compile a source file including the ‘gcrypt.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, Libgcrypt ships with a small helper program libgcrypt-config that
knows the path to the include file and other configuration options. The options that need
to be added to the compiler invocation at compile time are output by the ‘--cflags’ option
to libgcrypt-config. The following example shows how it can be used at the command
line:

gcc -c foo.c ‘libgcrypt-config --cflags‘

Adding the output of ‘libgcrypt-config --cflags’ to the compilers command line will
ensure that the compiler can find the Libgcrypt header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--libs’ to libgcrypt-
config can be used. For convenience, this option also outputs all other options that are
required to link the program with the Libgcrypt libraries (in particular, the ‘-lgcrypt’
option). The example shows how to link ‘foo.o’ with the Libgcrypt library to a program
foo.

4 The Libgcrypt Reference Manual

gcc -o foo foo.o ‘libgcrypt-config --libs‘

Of course you can also combine both examples to a single command by specifying both
options to libgcrypt-config:

gcc -o foo foo.c ‘libgcrypt-config --cflags --libs‘

2.3 Building sources using Automake

It is much easier if you use GNU Automake instead of writing your own Makefiles. If you
do that, you do not have to worry about finding and invoking the libgcrypt-config script
at all. Libgcrypt provides an extension to Automake that does all the work for you.

[Macro]AM_PATH_LIBGCRYPT ([minimum-version], [action-if-found],
[action-if-not-found])

Check whether Libgcrypt (at least version minimum-version, if given) exists on the
host system. If it is found, execute action-if-found, otherwise do action-if-not-found,
if given.

Additionally, the function defines LIBGCRYPT_CFLAGS to the flags needed for compi-
lation of the program to find the ‘gcrypt.h’ header file, and LIBGCRYPT_LIBS to the
linker flags needed to link the program to the Libgcrypt library.

You can use the defined Autoconf variables like this in your ‘Makefile.am’:

AM_CPPFLAGS = $(LIBGCRYPT_CFLAGS)
LDADD = $(LIBGCRYPT_LIBS)

2.4 Initializing the library

Before the library can be used, it must initialize itself. This is achieved by invoking the
function gcry_check_version described below.

Also, it is often desirable to check that the version of Libgcrypt used is indeed one
which fits all requirements. Even with binary compatibility, new features may have been
introduced, but due to problem with the dynamic linker an old version may actually be
used. So you may want to check that the version is okay right after program startup.

[Function]const char *gcry check version (const char *req_version)
The function gcry_check_version initializes the sub-systems used by Libgcrypt and
must be invoked before any other function in the library, with the exception of the
GCRYCTL_SET_THREAD_CBS command (called via the gcry_control function), see See
Section 2.5 [Multi-Threading], page 4.

Furthermore, this function returns the version number of the library. It can also verify
that the version number is higher than a certain required version number req version,
if this value is not a null pointer.

2.5 Multi-Threading

As mentioned earlier, the Libgcrypt library is thread-safe if you adhere to the following
requirements:

Chapter 2: Preparation 5

• If your application is multi-threaded, you must set the thread support callbacks with
the GCRYCTL_SET_THREAD_CBS command before any other function in the library.

This is easy enough if you are indeed writing an application using Libgcrypt. It is
rather problematic if you are writing a library instead. Here are some tips what to do
if you are writing a library:

If your library requires a certain thread package, just initialize Libgcrypt to use this
thread package. If your library supports multiple thread packages, but needs to be
configured, you will have to implement a way to determine which thread package the
application wants to use with your library anyway. Then configure Libgcrypt to use
this thread package.

If your library is fully reentrant without any special support by a thread package, then
you are lucky indeed. Unfortunately, this does not relieve you from doing either of the
two above, or use a third option. The third option is to let the application initialize
Libgcrypt for you. Then you are not using Libgcrypt transparently, though.

As if this was not difficult enough, a conflict may arise if two libraries try to initialize
Libgcrypt independently of each others, and both such libraries are then linked into the
same application. To make it a bit simpler for you, this will probably work, but only
if both libraries have the same requirement for the thread package. This is currently
only supported for the non-threaded case, GNU Pth and pthread. Support for more
thread packages is easy to add, so contact us if you require it.

• The function gcry_check_version must be called before any other function in the
library, except the GCRYCTL_SET_THREAD_CBS command (called via the gcry_control
function), because it initializes the thread support subsystem in Libgcrypt. To achieve
this in multi-threaded programs, you must synchronize the memory with respect to
other threads that also want to use Libgcrypt. For this, it is sufficient to call gcry_
check_version before creating the other threads using Libgcrypt1.

•
Just like the function gpg_strerror, the function gcry_strerror is not thread safe.
You have to use gpg_strerror_r instead.

Libgcrypt contains convenient macros, which define the necessary thread callbacks for
PThread and for GNU Pth:

GCRY_THREAD_OPTION_PTH_IMPL
This macro defines the following (static) symbols: gcry pth init,
gcry pth mutex init, gcry pth mutex destroy, gcry pth mutex lock,
gcry pth mutex unlock, gcry pth read, gcry pth write, gcry pth select,
gcry pth waitpid, gcry pth accept, gcry pth connect, gcry threads pth.

After including this macro, gcry control() shall be used with a command of
GCRYCTL SET THREAD CBS in order to register the thread callback struc-
ture named “gcry threads pth”.

1 At least this is true for POSIX threads, as pthread_create is a function that synchronizes memory with
respects to other threads. There are many functions which have this property, a complete list can be
found in POSIX, IEEE Std 1003.1-2003, Base Definitions, Issue 6, in the definition of the term “Memory
Synchronization”. For other thread packages, more relaxed or more strict rules may apply.

6 The Libgcrypt Reference Manual

GCRY_THREAD_OPTION_PTHREAD_IMPL
This macro defines the following (static) symbols: gcry pthread mutex init,
gcry pthread mutex destroy, gcry mutex lock, gcry mutex unlock,
gcry threads pthread.
After including this macro, gcry control() shall be used with a command of
GCRYCTL SET THREAD CBS in order to register the thread callback struc-
ture named “gcry threads pthread”.

Note that these macros need to be terminated with a semicolon. Keep in mind that
these are convenient macros for C programmers; C++ programmers might have to wrap
these macros in an “extern C” body.

Chapter 3: Generalities 7

3 Generalities

3.1 Controlling the library

[Function]gcry_error_t gcry_control (enum gcry ctl cmds cmd, ...)
This function can be used to influence the general behavior of Libgcrypt in several
ways. Depending on cmd, more arguments can or have to be provided.

GCRYCTL_ENABLE_M_GUARD; Arguments: none
This command enables the built-in memory guard. It must not be used
to activate the memory guard after the memory management has already
been used; therefore it can ONLY be used at initialization time. Note
that the memory guard is NOT used when the user of the library has set
his own memory management callbacks.

GCRYCTL_ENABLE_QUICK_RANDOM; Arguments: none
This command inhibits the use the very secure random quality level
(GCRY_VERY_STRONG_RANDOM) and degrades all request down to GCRY_
STRONG_RANDOM. In general this is not recommened. However, for some
applications the extra quality random Libgcrypt tries to create is not jus-
tified and this option may help to get better performace. Please check
with a crypto expert whether this option can be used for your application.
This option can only be used at initialization time.

GCRYCTL_DUMP_RANDOM_STATS
This command dumps PRNG related statistics to the librarys logging
stream.

GCRYCTL_DUMP_MEMORY_STATS
This command dumps memory manamgent related statistics to the li-
brarys logging stream.

GCRYCTL_DUMP_SECMEM_STATS
This command dumps secure memory manamgent related statistics to
the librarys logging stream.

GCRYCTL_DUMP_CONFIG; Arguments: none
This command dumps information pertaining to the configuration of
libgcrypt to the logging stream. It may be used before the intialization
has been finished but not before a gcry version check.

GCRYCTL_DROP_PRIVS
This command disables the use of secure memory and drops the priviliges
of the current process. FIXME.

GCRYCTL_DISABLE_SECMEM
This command disables the use of secure memory.
Many applications do not require secure memory, so they should disable
it right away. There won’t be a problem if not disabling it unless one
makes use of a feature which requires secure memory - in that case the
process will abort because the secmem is not initialized.

8 The Libgcrypt Reference Manual

GCRYCTL_INIT_SECMEM
GCRYCTL_TERM_SECMEM
GCRYCTL_DISABLE_SECMEM_WARN
GCRYCTL_SUSPEND_SECMEM_WARN
GCRYCTL_RESUME_SECMEM_WARN
GCRYCTL_USE_SECURE_RNDPOOL; Arguments: none

This command tells the PRNG to store random numbers in secure mem-
ory. FIXME: what about initialization time?

GCRYCTL_SET_RANDOM_SEED_FILE; Arguments: const char *filename
This command specifies the file, which is to be used as seed file for the
PRNG. If the seed file is registered prior to initialization of the PRNG,
the seed file’s content (if it exists and seems to be valid) is fed into the
PRNG pool. After the seed file has been registered, the PRNG can be
signalled to write out the PRNG pool’s content into the seed file with the
following command.

GCRYCTL_UPDATE_RANDOM_SEED_FILE; Arguments: none
Write out the PRNG pool’s content into the registered seed file.
Multiple instances of the applications sharing the same random seed file
can be started in parallel, in which case they will read out the same
pool and then race for updating it (the last update overwrites earlier
updates). They will differentiate only by the weak entropy that is added
in read seed file based on the PID and clock, and up to 16 bytes of
weak random non-blockingly. The consequence is that the output of
these different instances is correlated to some extent. In a perfect attack
scenario, the attacker can control (or at least guess) the PID and clock
of the application, and drain the system’s entropy pool to reduce the
"up to 16 bytes" above to 0. Then the dependencies of the inital states
of the pools are completely known. Note that this is not an issue if
random of GCRY_VERY_STRONG_RANDOM quality is requested as in this case
enough extra entropy gets mixed. It is also not an issue when using Linux
(rndlinux driver), because this one guarantees to read full 16 bytes from
/dev/urandom and thus there is no way for an attacker without kernel
access to conrol these 16 bytes.

GCRYCTL_SET_VERBOSITY
GCRYCTL_SET_DEBUG_FLAGS
GCRYCTL_CLEAR_DEBUG_FLAGS
GCRYCTL_DISABLE_INTERNAL_LOCKING
GCRYCTL_ANY_INITIALIZATION_P
GCRYCTL_INITIALIZATION_FINISHED_P
GCRYCTL_INITIALIZATION_FINISHED
GCRYCTL_SET_THREAD_CBS; Arguments: struct ath_ops *ath_ops

This command registers a thread-callback structure. See section “multi
threading” for more information on this command.

GCRYCTL_FAST_POLL
Run a fast random poll.

Chapter 3: Generalities 9

GCRYCTL_SET_RNDEGD_SOCKET; Arguments: const char *filename
This command may be used to override the default name of the EGD
socket to connect to. It may be used only during initialization as it is
not thread safe. Changing the socket name again is not supported. The
function may return an error if the given filename is too long for a local
socket name.
EGD is an alternative random gatherer, used only on a few systems.

3.2 Modules

Libgcrypt supports the use of ‘extension modules’, which implement algorithms in addition
to those already built into the library directly.

[Data type]gcry_module_t
This data type represents a ‘module’.

Functions registering modules provided by the user take a ‘module specification struc-
ture’ as input and return a value of gcry_module_t and an ID that is unique in the modules’
category. This ID can be used to reference the newly registered module. After registering
a module successfully, the new functionality should be able to be used through the normal
functions provided by Libgcrypt until it is unregistered again.

3.3 Error Handling

Many functions in Libgcrypt can return an error if they fail. For this reason, the application
should always catch the error condition and take appropriate measures, for example by
releasing the resources and passing the error up to the caller, or by displaying a descriptive
message to the user and cancelling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly. For example, if you try to decrypt a tempered
message, the decryption will fail. Another error value actually means that the end of a data
buffer or list has been reached. The following descriptions explain for many error codes
what they mean usually. Some error values have specific meanings if returned by a certain
functions. Such cases are described in the documentation of those functions.

Libgcrypt uses the libgpg-error library. This allows to share the error codes with
other components of the GnuPG system, and to pass error values transparently from the
crypto engine, or some helper application of the crypto engine, to the user. This way no
information is lost. As a consequence, Libgcrypt does not use its own identifiers for error
codes, but uses those provided by libgpg-error. They usually start with GPG_ERR_.

However, Libgcrypt does provide aliases for the functions defined in libgpg-error, which
might be preferred for name space consistency.

Most functions in Libgcrypt return an error code in the case of failure. For this reason,
the application should always catch the error condition and take appropriate measures, for
example by releasing the resources and passing the error up to the caller, or by displaying
a descriptive message to the user and canceling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly.

10 The Libgcrypt Reference Manual

GnuPG components, including Libgcrypt, use an extra library named libgpg-error to
provide a common error handling scheme. For more information on libgpg-error, see the
according manual.

3.3.1 Error Values

[Data type]gcry_err_code_t
The gcry_err_code_t type is an alias for the libgpg-error type gpg_err_code_t.
The error code indicates the type of an error, or the reason why an operation failed.
A list of important error codes can be found in the next section.

[Data type]gcry_err_source_t
The gcry_err_source_t type is an alias for the libgpg-error type gpg_err_
source_t. The error source has not a precisely defined meaning. Sometimes it is
the place where the error happened, sometimes it is the place where an error was
encoded into an error value. Usually the error source will give an indication to where
to look for the problem. This is not always true, but it is attempted to achieve this
goal.
A list of important error sources can be found in the next section.

[Data type]gcry_error_t
The gcry_error_t type is an alias for the libgpg-error type gpg_error_t. An
error value like this has always two components, an error code and an error source.
Both together form the error value.
Thus, the error value can not be directly compared against an error code, but the
accessor functions described below must be used. However, it is guaranteed that only
0 is used to indicate success (GPG_ERR_NO_ERROR), and that in this case all other parts
of the error value are set to 0, too.
Note that in Libgcrypt, the error source is used purely for diagnostic purposes. Only
the error code should be checked to test for a certain outcome of a function. The
manual only documents the error code part of an error value. The error source is left
unspecified and might be anything.

[Function]gcry_err_code_t gcry_err_code (gcry error t err)
The static inline function gcry_err_code returns the gcry_err_code_t component
of the error value err. This function must be used to extract the error code from an
error value in order to compare it with the GPG_ERR_* error code macros.

[Function]gcry_err_source_t gcry_err_source (gcry error t err)
The static inline function gcry_err_source returns the gcry_err_source_t compo-
nent of the error value err. This function must be used to extract the error source
from an error value in order to compare it with the GPG_ERR_SOURCE_* error source
macros.

[Function]gcry_error_t gcry_err_make (gcry err source t source ,
gcry err code t code)

The static inline function gcry_err_make returns the error value consisting of the
error source source and the error code code.

Chapter 3: Generalities 11

This function can be used in callback functions to construct an error value to return
it to the library.

[Function]gcry_error_t gcry_error (gcry err code t code)
The static inline function gcry_error returns the error value consisting of the default
error source and the error code code.
For GCRY applications, the default error source is GPG_ERR_SOURCE_USER_1. You can
define GCRY_ERR_SOURCE_DEFAULT before including ‘gcrypt.h’ to change this default.
This function can be used in callback functions to construct an error value to return
it to the library.

The libgpg-error library provides error codes for all system error numbers it knows
about. If err is an unknown error number, the error code GPG_ERR_UNKNOWN_ERRNO is used.
The following functions can be used to construct error values from system errno numbers.

[Function]gcry_error_t gcry_err_make_from_errno
(gcry err source t source , int err)

The function gcry_err_make_from_errno is like gcry_err_make, but it takes a sys-
tem error like errno instead of a gcry_err_code_t error code.

[Function]gcry_error_t gcry_error_from_errno (int err)
The function gcry_error_from_errno is like gcry_error, but it takes a system error
like errno instead of a gcry_err_code_t error code.

Sometimes you might want to map system error numbers to error codes directly, or map
an error code representing a system error back to the system error number. The following
functions can be used to do that.

[Function]gcry_err_code_t gcry_err_code_from_errno (int err)
The function gcry_err_code_from_errno returns the error code for the system error
err. If err is not a known system error, the function returns GPG_ERR_UNKNOWN_ERRNO.

[Function]int gcry_err_code_to_errno (gcry err code t err)
The function gcry_err_code_to_errno returns the system error for the error code
err. If err is not an error code representing a system error, or if this system error is
not defined on this system, the function returns 0.

3.3.2 Error Sources

The library libgpg-error defines an error source for every component of the GnuPG
system. The error source part of an error value is not well defined. As such it is mainly
useful to improve the diagnostic error message for the user.

If the error code part of an error value is 0, the whole error value will be 0. In this case
the error source part is of course GPG_ERR_SOURCE_UNKNOWN.

The list of error sources that might occur in applications using Libgctypt is:

GPG_ERR_SOURCE_UNKNOWN
The error source is not known. The value of this error source is 0.

GPG_ERR_SOURCE_GPGME
The error source is GPGME itself.

12 The Libgcrypt Reference Manual

GPG_ERR_SOURCE_GPG
The error source is GnuPG, which is the crypto engine used for the OpenPGP
protocol.

GPG_ERR_SOURCE_GPGSM
The error source is GPGSM, which is the crypto engine used for the OpenPGP
protocol.

GPG_ERR_SOURCE_GCRYPT
The error source is libgcrypt, which is used by crypto engines to perform
cryptographic operations.

GPG_ERR_SOURCE_GPGAGENT
The error source is gpg-agent, which is used by crypto engines to perform
operations with the secret key.

GPG_ERR_SOURCE_PINENTRY
The error source is pinentry, which is used by gpg-agent to query the
passphrase to unlock a secret key.

GPG_ERR_SOURCE_SCD
The error source is the SmartCard Daemon, which is used by gpg-agent to
delegate operations with the secret key to a SmartCard.

GPG_ERR_SOURCE_KEYBOX
The error source is libkbx, a library used by the crypto engines to manage
local keyrings.

GPG_ERR_SOURCE_USER_1
GPG_ERR_SOURCE_USER_2
GPG_ERR_SOURCE_USER_3
GPG_ERR_SOURCE_USER_4

These error sources are not used by any GnuPG component and can be used by
other software. For example, applications using Libgcrypt can use them to mark
error values coming from callback handlers. Thus GPG_ERR_SOURCE_USER_1 is
the default for errors created with gcry_error and gcry_error_from_errno,
unless you define GCRY_ERR_SOURCE_DEFAULT before including ‘gcrypt.h’.

3.3.3 Error Codes

The library libgpg-error defines many error values. The following list includes the most
important error codes.

GPG_ERR_EOF
This value indicates the end of a list, buffer or file.

GPG_ERR_NO_ERROR
This value indicates success. The value of this error code is 0. Also, it is
guaranteed that an error value made from the error code 0 will be 0 itself (as a
whole). This means that the error source information is lost for this error code,
however, as this error code indicates that no error occurred, this is generally
not a problem.

Chapter 3: Generalities 13

GPG_ERR_GENERAL
This value means that something went wrong, but either there is not enough
information about the problem to return a more useful error value, or there is
no separate error value for this type of problem.

GPG_ERR_ENOMEM
This value means that an out-of-memory condition occurred.

GPG_ERR_E...
System errors are mapped to GPG ERR EFOO where FOO is the symbol for
the system error.

GPG_ERR_INV_VALUE
This value means that some user provided data was out of range.

GPG_ERR_UNUSABLE_PUBKEY
This value means that some recipients for a message were invalid.

GPG_ERR_UNUSABLE_SECKEY
This value means that some signers were invalid.

GPG_ERR_NO_DATA
This value means that data was expected where no data was found.

GPG_ERR_CONFLICT
This value means that a conflict of some sort occurred.

GPG_ERR_NOT_IMPLEMENTED
This value indicates that the specific function (or operation) is not implemented.
This error should never happen. It can only occur if you use certain values or
configuration options which do not work, but for which we think that they
should work at some later time.

GPG_ERR_DECRYPT_FAILED
This value indicates that a decryption operation was unsuccessful.

GPG_ERR_WRONG_KEY_USAGE
This value indicates that a key is not used appropriately.

GPG_ERR_NO_SECKEY
This value indicates that no secret key for the user ID is available.

GPG_ERR_UNSUPPORTED_ALGORITHM
This value means a verification failed because the cryptographic algorithm is
not supported by the crypto backend.

GPG_ERR_BAD_SIGNATURE
This value means a verification failed because the signature is bad.

GPG_ERR_NO_PUBKEY
This value means a verification failed because the public key is not available.

GPG_ERR_USER_1
GPG_ERR_USER_2
...

14 The Libgcrypt Reference Manual

GPG_ERR_USER_16
These error codes are not used by any GnuPG component and can be freely
used by other software. Applications using Libgcrypt might use them to mark
specific errors returned by callback handlers if no suitable error codes (including
the system errors) for these errors exist already.

3.3.4 Error Strings

[Function]const char * gcry_strerror (gcry error t err)
The function gcry_strerror returns a pointer to a statically allocated string con-
taining a description of the error code contained in the error value err. This string
can be used to output a diagnostic message to the user.

[Function]const char * gcry_strsource (gcry error t err)
The function gcry_strerror returns a pointer to a statically allocated string con-
taining a description of the error source contained in the error value err. This string
can be used to output a diagnostic message to the user.

The following example illustrates the use of the functions described above:
{
gcry_cipher_hd_t handle;
gcry_error_t err = 0;

err = gcry_cipher_open (&handle, GCRY_CIPHER_AES, GCRY_CIPHER_MODE_CBC, 0);
if (err)
{

fprintf (stderr, "Failure: %s/%s\n",
gcry_strsource (err),
gcry_strerror (err));

}
}

Chapter 4: Handler Functions 15

4 Handler Functions

Libgcrypt makes it possible to install so called ‘handler functions’, which get called by
Libgcrypt in case of certain events.

4.1 Progress handler

It is often useful to retrieve some feedback while long running operations are performed.

[Data type]gcry_handler_progress_t
Progress handler functions have to be of the type gcry_handler_progress_t, which
is defined as:

void (*gcry_handler_progress_t) (void *, const char *, int, int, int)

The following function may be used to register a handler function for this purpose.

[Function]void gcry_set_progress_handler (gcry handler progress t cb, void
*cb_data)

This function installs cb as the ‘Progress handler’ function. cb must be defined as
follows:

void
my_progress_handler (void *cb_data, const char *what,

int printchar, int current, int total)
{
/* Do something. */

}

A description of the arguments of the progress handler function follows.

cb data The argument provided in the call to gcry_set_progress_handler.

what A string identifying the type of the progress output. The following values
for what are defined:

need_entropy
Not enough entropy is available. total holds the number of
required bytes.

primegen Values for printchar:

\n Prime generated.

! Need to refresh the pool of prime numbers.

<, > Number of bits adjusted.

^ Searching for a generator.

. Fermat test on 10 candidates failed.

: Restart with a new random value.

+ Rabin Miller test passed.

16 The Libgcrypt Reference Manual

4.2 Allocation handler

It is possible to make Libgcrypt use special memory allocation functions instead of the
built-in ones.

Memory allocation functions are of the following types:

[Data type]gcry_handler_alloc_t
This type is defined as: void *(*gcry_handler_alloc_t) (size_t n).

[Data type]gcry_handler_secure_check_t
This type is defined as: int *(*gcry_handler_secure_check_t) (const void *).

[Data type]gcry_handler_realloc_t
This type is defined as: void *(*gcry_handler_realloc_t) (void *p, size_t n).

[Data type]gcry_handler_free_t
This type is defined as: void *(*gcry_handler_free_t) (void *).

Special memory allocation functions can be installed with the following function:

[Function]void gcry_set_allocation_handler (gcry handler alloc t
func_alloc, gcry handler alloc t func_alloc_secure,
gcry handler secure check t func_secure_check, gcry handler realloc t
func_realloc, gcry handler free t func_free)

Install the provided functions and use them instead of the built-in functions for doing
memory allocation.

4.3 Error handler

The following functions may be used to register handler functions that are called by
Libgcrypt in case certain error conditions occur.

[Data type]gcry_handler_no_mem_t
This type is defined as: void (*gcry_handler_no_mem_t) (void *, size_t,
unsigned int)

[Function]void gcry_set_outofcore_handler (gcry handler no mem t
func_no_mem, void *cb_data)

This function registers func no mem as ‘out-of-core handler’, which means that it
will be called in the case of not having enough memory available.

[Data type]gcry_handler_error_t
This type is defined as: void (*gcry_handler_error_t) (void *, int, const char
*)

[Function]void gcry_set_fatalerror_handler (gcry handler error t
func_error, void *cb_data)

This function registers func error as ‘error handler’, which means that it will be called
in error conditions.

Chapter 4: Handler Functions 17

4.4 Logging handler

[Data type]gcry_handler_log_t
This type is defined as: void (*gcry_handler_log_t) (void *, int, const char
*, va_list)

[Function]void gcry_set_log_handler (gcry handler log t func_log, void
*cb_data)

This function registers func log as ‘logging handler’, which means that it will be called
in case Libgcrypt wants to log a message.

18 The Libgcrypt Reference Manual

Chapter 5: Symmetric cryptography 19

5 Symmetric cryptography

The cipher functions are used for symmetrical cryptography, i.e. cryptography using a
shared key. The programming model follows an open/process/close paradigm and is in that
similar to other building blocks provided by Libgcrypt.

5.1 Available ciphers

GCRY_CIPHER_NONE
This is not a real algorithm but used by some functions as error return. The
value always evaluates to false.

GCRY_CIPHER_IDEA
This is the IDEA algorithm. The constant is provided but there is currently no
implementation for it because the algorithm is patented.

GCRY_CIPHER_3DES
Triple-DES with 3 Keys as EDE. The key size of this algorithm is 168 but you
have to pass 192 bits because the most significant bits of each byte are ignored.

GCRY_CIPHER_CAST5
CAST128-5 block cipher algorithm. The key size is 128 bits.

GCRY_CIPHER_BLOWFISH
The blowfish algorithm. The current implementation allows only for a key size
of 128 bits.

GCRY_CIPHER_SAFER_SK128
Reserved and not currently implemented.

GCRY_CIPHER_DES_SK
Reserved and not currently implemented.

GCRY_CIPHER_AES
GCRY_CIPHER_AES128
GCRY_CIPHER_RIJNDAEL
GCRY_CIPHER_RIJNDAEL128

AES (Rijndael) with a 128 bit key.

GCRY_CIPHER_AES192
GCRY_CIPHER_RIJNDAEL192

AES (Rijndael) with a 192 bit key.

GCRY_CIPHER_AES256
GCRY_CIPHER_RIJNDAEL256

AES (Rijndael) with a 256 bit key.

GCRY_CIPHER_TWOFISH
The Twofish algorithm with a 256 bit key.

GCRY_CIPHER_TWOFISH128
The Twofish algorithm with a 128 bit key.

20 The Libgcrypt Reference Manual

GCRY_CIPHER_ARCFOUR
An algorithm which is 100% compatible with RSA Inc.’s RC4 algorithm. Note
that this is a stream cipher and must be used very carefully to avoid a couple
of weaknesses.

GCRY_CIPHER_DES
Standard DES with a 56 bit key. You need to pass 64 bit but the high bits of
each byte are ignored. Note, that this is a weak algorithm which can be broken
in reasonable time using a brute force approach.

GCRY_CIPHER_SERPENT128
GCRY_CIPHER_SERPENT192
GCRY_CIPHER_SERPENT256

The Serpent cipher from the AES contest.

GCRY_CIPHER_RFC2268_40
GCRY_CIPHER_RFC2268_128

Ron’s Cipher 2 in the 40 and 128 bit variants. Note, that we currently only
support the 40 bit variant. The identifier for 128 is reserved for future use.

GCRY_CIPHER_SEED
A 128 bit cipher as described by RFC4269.

GCRY_CIPHER_CAMELLIA128
GCRY_CIPHER_CAMELLIA192
GCRY_CIPHER_CAMELLIA256

The Camellia cipher by NTT. See http://info.isl.ntt.co.jp/crypt/eng/
camellia/specifications.html.

5.2 Cipher modules

Libgcrypt makes it possible to load additional ‘cipher modules’; these ciphers can be used
just like the cipher algorithms that are built into the library directly. For an introduction
into extension modules, see See Section 3.2 [Modules], page 9.

[Data type]gcry_cipher_spec_t
This is the ‘module specification structure’ needed for registering cipher modules,
which has to be filled in by the user before it can be used to register a module. It
contains the following members:

const char *name
The primary name of the algorithm.

const char **aliases
A list of strings that are ‘aliases’ for the algorithm. The list must be
terminated with a NULL element.

gcry_cipher_oid_spec_t *oids
A list of OIDs that are to be associated with the algorithm. The list’s
last element must have it’s ‘oid’ member set to NULL. See below for an
explanation of this type.

http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html

Chapter 5: Symmetric cryptography 21

size_t blocksize
The block size of the algorithm, in bytes.

size_t keylen
The length of the key, in bits.

size_t contextsize
The size of the algorithm-specific ‘context’, that should be allocated for
each handle.

gcry_cipher_setkey_t setkey
The function responsible for initializing a handle with a provided key. See
below for a description of this type.

gcry_cipher_encrypt_t encrypt
The function responsible for encrypting a single block. See below for a
description of this type.

gcry_cipher_decrypt_t decrypt
The function responsible for decrypting a single block. See below for a
description of this type.

gcry_cipher_stencrypt_t stencrypt
Like ‘encrypt’, for stream ciphers. See below for a description of this
type.

gcry_cipher_stdecrypt_t stdecrypt
Like ‘decrypt’, for stream ciphers. See below for a description of this
type.

[Data type]gcry_cipher_oid_spec_t
This type is used for associating a user-provided algorithm implementation with cer-
tain OIDs. It contains the following members:

const char *oid
Textual representation of the OID.

int mode Cipher mode for which this OID is valid.

[Data type]gcry_cipher_setkey_t
Type for the ‘setkey’ function, defined as: gcry err code t (*gcry cipher setkey t)
(void *c, const unsigned char *key, unsigned keylen)

[Data type]gcry_cipher_encrypt_t
Type for the ‘encrypt’ function, defined as: gcry err code t (*gcry cipher encrypt t)
(void *c, const unsigned char *outbuf, const unsigned char *inbuf)

[Data type]gcry_cipher_decrypt_t
Type for the ‘decrypt’ function, defined as: gcry err code t (*gcry cipher decrypt t)
(void *c, const unsigned char *outbuf, const unsigned char *inbuf)

[Data type]gcry_cipher_stencrypt_t
Type for the ‘stencrypt’ function, defined as: gcry err code t (*gcry cipher stencrypt t)
(void *c, const unsigned char *outbuf, const unsigned char *, unsigned int n)

22 The Libgcrypt Reference Manual

[Data type]gcry_cipher_stdecrypt_t
Type for the ‘stdecrypt’ function, defined as: gcry err code t (*gcry cipher stdecrypt t)
(void *c, const unsigned char *outbuf, const unsigned char *, unsigned int n)

[Function]gcry_error_t gcry_cipher_register (gcry cipher spec t *cipher,
unsigned int *algorithm id, gcry module t *module)

Register a new cipher module whose specification can be found in cipher. On success,
a new algorithm ID is stored in algorithm id and a pointer representing this module
is stored in module.

[Function]void gcry_cipher_unregister (gcry module t module)
Unregister the cipher identified by module, which must have been registered with
gcry cipher register.

[Function]gcry_error_t gcry_cipher_list (int *list, int *list_length)
Get a list consisting of the IDs of the loaded cipher modules. If list is zero, write the
number of loaded cipher modules to list length and return. If list is non-zero, the
first *list length algorithm IDs are stored in list, which must be of according size. In
case there are less cipher modules than *list length, *list length is updated to the
correct number.

5.3 Available cipher modes

GCRY_CIPHER_MODE_NONE
No mode specified, may be set later using other functions. The value of this
constant is always 0.

GCRY_CIPHER_MODE_ECB
Electronic Codebook mode.

GCRY_CIPHER_MODE_CFB
Cipher Feedback mode.

GCRY_CIPHER_MODE_CBC
Cipher Block Chaining mode.

GCRY_CIPHER_MODE_STREAM
Stream mode, only to be used with stream cipher algorithms.

GCRY_CIPHER_MODE_OFB
Output Feedback mode.

GCRY_CIPHER_MODE_CTR
Counter mode.

5.4 Working with cipher handles

To use a cipher algorithm, you must first allocate an according handle. This is to be done
using the open function:

Chapter 5: Symmetric cryptography 23

[Function]gcry_error_t gcry_cipher_open (gcry cipher hd t *hd, int algo, int
mode, unsigned int flags)

This function creates the context handle required for most of the other cipher functions
and returns a handle to it in ‘hd’. In case of an error, an according error code is
returned.
The ID of algorithm to use must be specified via algo. See See Section 5.1 [Available
ciphers], page 19, for a list of supported ciphers and the according constants.
Besides using the constants directly, the function gcry_cipher_map_name may be
used to convert the textual name of an algorithm into the according numeric ID.
The cipher mode to use must be specified via mode. See See Section 5.3 [Available ci-
pher modes], page 22, for a list of supported cipher modes and the according constants.
Note that some modes are incompatible with some algorithms - in particular, stream
mode (GCRY CIPHER MODE STREAM) only works with stream ciphers. Any
block cipher mode (GCRY CIPHER MODE ECB, GCRY CIPHER MODE CBC,
GCRY CIPHER MODE CFB, GCRY CIPHER MODE OFB or GCRY CIPHER MODE CTR)
will work with any block cipher algorithm.
The third argument flags can either be passed as 0 or as the bit-wise OR of the
following constants.

GCRY_CIPHER_SECURE
Make sure that all operations are allocated in secure memory. This is
useful when the key material is highly confidential.

GCRY_CIPHER_ENABLE_SYNC
This flag enables the CFB sync mode, which is a special feature of
Libgcrypt’s CFB mode implementation to allow for OpenPGP’s CFB
variant. See gcry_cipher_sync.

GCRY_CIPHER_CBC_CTS
Enable cipher text stealing (CTS) for the CBC mode. Cannot be used
simultaneous as GCRY CIPHER CBC MAC. CTS mode makes it pos-
sible to transform data of almost arbitrary size (only limitation is that it
must be greater than the algorithm’s block size).

GCRY_CIPHER_CBC_MAC
Compute CBC-MAC keyed checksums. This is the same as CBC
mode, but only output the last block. Cannot be used simultaneous as
GCRY CIPHER CBC CTS.

Use the following function to release an existing handle:

[Function]void gcry_cipher_close (gcry cipher hd t h)
This function releases the context created by gcry_cipher_open.

In order to use a handle for performing cryptographic operations, a ‘key’ has to be set
first:

[Function]gcry_error_t gcry_cipher_setkey (gcry cipher hd t h, void *k,
size t l)

Set the key k used for encryption or decryption in the context denoted by the handle
h. The length l of the key k must match the required length of the algorithm set

24 The Libgcrypt Reference Manual

for this context or be in the allowed range for algorithms with variable key size. The
function checks this and returns an error if there is a problem. A caller should always
check for an error.
Note that this is currently implemented as a macro but may be changed to a function
in the future.

Most crypto modes requires an initialization vector (IV), which usually is a non-secret
random string acting as a kind of salt value. The CTR mode requires a counter, which is
also similar to a salt value. To set the IV or CTR, use these functions:

[Function]gcry_error_t gcry_cipher_setiv (gcry cipher hd t h, void *k, size t
l)

Set the initialization vector used for encryption or decryption. The vector is passed
as the buffer K of length l and copied to internal data structures. The function checks
that the IV matches the requirement of the selected algorithm and mode. Note that
this is implemented as a macro.

[Function]gcry_error_t gcry_cipher_setctr (gcry cipher hd t h, void *c,
size t l)

Set the counter vector used for encryption or decryption. The counter is passed as
the buffer c of length l and copied to internal data structures. The function checks
that the counter matches the requirement of the selected algorithm (i.e., it must be
the same size as the block size). Note that this is implemented as a macro.

[Function]gcry_error_t gcry_cipher_reset (gcry cipher hd t h)
Set the given handle’s context back to the state it had after the last call to
gcry cipher setkey and clear the initialization vector.
Note that gcry cipher reset is implemented as a macro.

The actual encryption and decryption is done by using one of the following functions.
They may be used as often as required to process all the data.

[Function]gcry_error_t gcry_cipher_encrypt (gcry cipher hd t h, unsigned
char *out, size t outsize, const unsigned char *in, size t inlen)

gcry_cipher_encrypt is used to encrypt the data. This function can either work in
place or with two buffers. It uses the cipher context already setup and described by
the handle h. There are 2 ways to use the function: If in is passed as NULL and inlen
is 0, in-place encryption of the data in out or length outsize takes place. With in
being not NULL, inlen bytes are encrypted to the buffer out which must have at least
a size of inlen. outsize must be set to the allocated size of out, so that the function
can check that there is sufficient space. Note that overlapping buffers are not allowed.
Depending on the selected algorithms and encryption mode, the length of the buffers
must be a multiple of the block size.
The function returns 0 on success or an error code.

[Function]gcry_error_t gcry_cipher_decrypt (gcry cipher hd t h, unsigned
char *out, size t outsize, const unsigned char *in, size t inlen)

gcry_cipher_decrypt is used to decrypt the data. This function can either work in
place or with two buffers. It uses the cipher context already setup and described by

Chapter 5: Symmetric cryptography 25

the handle h. There are 2 ways to use the function: If in is passed as NULL and inlen
is 0, in-place decryption of the data in out or length outsize takes place. With in
being not NULL, inlen bytes are decrypted to the buffer out which must have at least
a size of inlen. outsize must be set to the allocated size of out, so that the function
can check that there is sufficient space. Note that overlapping buffers are not allowed.
Depending on the selected algorithms and encryption mode, the length of the buffers
must be a multiple of the block size.
The function returns 0 on success or an error code.

OpenPGP (as defined in RFC-2440) requires a special sync operation in some places.
The following function is used for this:

[Function]gcry_error_t gcry_cipher_sync (gcry cipher hd t h)
Perform the OpenPGP sync operation on context h. Note that this is a no-op unless
the context was created with the flag GCRY_CIPHER_ENABLE_SYNC

Some of the described functions are implemented as macros utilizing a catch-all control
function. This control function is rarely used directly but there is nothing which would
inhibit it:

[Function]gcry_error_t gcry_cipher_ctl (gcry cipher hd t h, int cmd, void
*buffer, size t buflen)

gcry_cipher_ctl controls various aspects of the cipher module and specific cipher
contexts. Usually some more specialized functions or macros are used for this pur-
pose. The semantics of the function and its parameters depends on the the command
cmd and the passed context handle h. Please see the comments in the source code
(src/global.c) for details.

[Function]gcry_error_t gcry_cipher_info (gcry cipher hd t h, int what, void
*buffer, size t *nbytes)

gcry_cipher_info is used to retrieve various information about a cipher context or
the cipher module in general.
Currently no information is available.

5.5 General cipher functions

To work with the algorithms, several functions are available to map algorithm names to
the internal identifiers, as well as ways to retrieve information about an algorithm or the
current cipher context.

[Function]gcry_error_t gcry_cipher_algo_info (int algo, int what, void
*buffer, size t *nbytes)

This function is used to retrieve information on a specific algorithm. You pass the
cipher algorithm ID as algo and the type of information requested as what. The
result is either returned as the return code of the function or copied to the provided
buffer whose allocated length must be available in an integer variable with the address
passed in nbytes. This variable will also receive the actual used length of the buffer.
Here is a list of supported codes for what:

26 The Libgcrypt Reference Manual

GCRYCTL_GET_KEYLEN:
Return the length of the key. If the algorithm supports multiple key
lengths, the maximum supported value is returned. The length is re-
turned as number of octets (bytes) and not as number of bits in nbytes;
buffer must be zero.

GCRYCTL_GET_BLKLEN:
Return the block length of the algorithm. The length is returned as a
number of octets in nbytes; buffer must be zero.

GCRYCTL_TEST_ALGO:
Returns 0 when the specified algorithm is available for use. buffer and
nbytes must be zero.

[Function]const char *gcry cipher algo name (int algo)
gcry_cipher_algo_name returns a string with the name of the cipher algorithm algo.
If the algorithm is not known or another error occurred, the string "?" is returned.
This function should not be used to test for the availability of an algorithm.

[Function]int gcry_cipher_map_name (const char *name)
gcry_cipher_map_name returns the algorithm identifier for the cipher algorithm de-
scribed by the string name. If this algorithm is not available 0 is returned.

[Function]int gcry_cipher_mode_from_oid (const char *string)
Return the cipher mode associated with an ASN.1 object identifier. The object identi-
fier is expected to be in the IETF-style dotted decimal notation. The function returns
0 for an unknown object identifier or when no mode is associated with it.

Chapter 6: Hashing 27

6 Hashing

Libgcrypt provides an easy and consistent to use interface for hashing. Hashing is buffered
and several hash algorithms can be updated at once. It is possible to calculate a MAC using
the same routines. The programming model follows an open/process/close paradigm and
is in that similar to other building blocks provided by Libgcrypt.

For convenience reasons, a few cyclic redundancy check value operations are also sup-
ported.

6.1 Available hash algorithms

GCRY_MD_NONE
This is not a real algorithm but used by some functions as an error return value.
This constant is guaranteed to have the value 0.

GCRY_MD_SHA1
This is the SHA-1 algorithm which yields a message digest of 20 bytes.

GCRY_MD_RMD160
This is the 160 bit version of the RIPE message digest (RIPE-MD-160). Like
SHA-1 it also yields a digest of 20 bytes.

GCRY_MD_MD5
This is the well known MD5 algorithm, which yields a message digest of 16
bytes.

GCRY_MD_MD4
This is the MD4 algorithm, which yields a message digest of 16 bytes.

GCRY_MD_MD2
This is an reserved identifier for MD-2; there is no implementation yet.

GCRY_MD_TIGER
This is the TIGER/192 algorithm which yields a message digest of 24 bytes.

GCRY_MD_HAVAL
This is an reserved for the HAVAL algorithm with 5 passes and 160 bit. It
yields a message digest of 20 bytes. Note that there is no implementation yet
available.

GCRY_MD_SHA224
This is the SHA-224 algorithm which yields a message digest of 28 bytes. See
Change Notice 1 for FIPS 180-2 for the specification.

GCRY_MD_SHA256
This is the SHA-256 algorithm which yields a message digest of 32 bytes. See
FIPS 180-2 for the specification.

GCRY_MD_SHA384
This is the SHA-384 algorithm which yields a message digest of 48 bytes. See
FIPS 180-2 for the specification.

28 The Libgcrypt Reference Manual

GCRY_MD_SHA512
This is the SHA-384 algorithm which yields a message digest of 64 bytes. See
FIPS 180-2 for the specification.

GCRY_MD_CRC32
This is the ISO 3309 and ITU-T V.42 cyclic redundancy check. It yields an
output of 4 bytes.

GCRY_MD_CRC32_RFC1510
This is the above cyclic redundancy check function, as modified by RFC 1510.
It yields an output of 4 bytes.

GCRY_MD_CRC24_RFC2440
This is the OpenPGP cyclic redundancy check function. It yields an output of
3 bytes.

GCRY_MD_WHIRLPOOL
This is the Whirlpool algorithm which yields a message digest of 64 bytes.

6.2 Hash algorithm modules

Libgcrypt makes it possible to load additional ‘message digest modules’; these digests can
be used just like the message digest algorithms that are built into the library directly. For
an introduction into extension modules, see See Section 3.2 [Modules], page 9.

[Data type]gcry_md_spec_t
This is the ‘module specification structure’ needed for registering message digest mod-
ules, which has to be filled in by the user before it can be used to register a module.
It contains the following members:

const char *name
The primary name of this algorithm.

unsigned char *asnoid
Array of bytes that form the ASN OID.

int asnlen
Length of bytes in ‘asnoid’.

gcry_md_oid_spec_t *oids
A list of OIDs that are to be associated with the algorithm. The list’s
last element must have it’s ‘oid’ member set to NULL. See below for an
explanation of this type. See below for an explanation of this type.

int mdlen Length of the message digest algorithm. See below for an explanation of
this type.

gcry_md_init_t init
The function responsible for initializing a handle. See below for an ex-
planation of this type.

gcry_md_write_t write
The function responsible for writing data into a message digest context.
See below for an explanation of this type.

Chapter 6: Hashing 29

gcry_md_final_t final
The function responsible for ‘finalizing’ a message digest context. See
below for an explanation of this type.

gcry_md_read_t read
The function responsible for reading out a message digest result. See
below for an explanation of this type.

size_t contextsize
The size of the algorithm-specific ‘context’, that should be allocated for
each handle.

[Data type]gcry_md_oid_spec_t
This type is used for associating a user-provided algorithm implementation with cer-
tain OIDs. It contains the following members:

const char *oidstring
Textual representation of the OID.

[Data type]gcry_md_init_t
Type for the ‘init’ function, defined as: void (*gcry md init t) (void *c)

[Data type]gcry_md_write_t
Type for the ‘write’ function, defined as: void (*gcry md write t) (void *c, unsigned
char *buf, size t nbytes)

[Data type]gcry_md_final_t
Type for the ‘final’ function, defined as: void (*gcry md final t) (void *c)

[Data type]gcry_md_read_t
Type for the ‘read’ function, defined as: unsigned char *(*gcry md read t) (void *c)

[Function]gcry_error_t gcry_md_register (gcry md spec t *digest, unsigned
int *algorithm id, gcry module t *module)

Register a new digest module whose specification can be found in digest. On success,
a new algorithm ID is stored in algorithm id and a pointer representing this module
is stored in module.

[Function]void gcry_md_unregister (gcry module t module)
Unregister the digest identified by module, which must have been registered with
gcry md register.

[Function]gcry_error_t gcry_md_list (int *list, int *list_length)
Get a list consisting of the IDs of the loaded message digest modules. If list is zero,
write the number of loaded message digest modules to list length and return. If
list is non-zero, the first *list length algorithm IDs are stored in list, which must be
of according size. In case there are less message digests modules than *list length,
*list length is updated to the correct number.

30 The Libgcrypt Reference Manual

6.3 Working with hash algorithms

To use most of these function it is necessary to create a context; this is done using:

[Function]gcry_error_t gcry_md_open (gcry md hd t *hd, int algo, unsigned
int flags)

Create a message digest object for algorithm algo. flags may be given as an bitwise
OR of constants described below. algo may be given as 0 if the algorithms to use are
later set using gcry_md_enable. hd is guaranteed to either receive a valid handle or
NULL.

For a list of supported algorithms, see See Section 6.1 [Available hash algorithms],
page 27.

The flags allowed for mode are:

GCRY_MD_FLAG_SECURE
Allocate all buffers and the resulting digest in "secure memory". Use this
is the hashed data is highly confidential.

GCRY_MD_FLAG_HMAC
Turn the algorithm into a HMAC message authentication algorithm. This
only works if just one algorithm is enabled for the handle. Note that the
function gcry_md_setkey must be used to set the MAC key. If you want
CBC message authentication codes based on a cipher, see See Section 5.4
[Working with cipher handles], page 22.

You may use the function gcry_md_is_enabled to later check whether an algorithm
has been enabled.

If you want to calculate several hash algorithms at the same time, you have to use the
following function right after the gcry_md_open:

[Function]gcry_error_t gcry_md_enable (gcry md hd t h, int algo)
Add the message digest algorithm algo to the digest object described by handle h.
Duplicated enabling of algorithms is detected and ignored.

If the flag GCRY_MD_FLAG_HMAC was used, the key for the MAC must be set using the
function:

[Function]gcry_error_t gcry_md_setkey (gcry md hd t h, const void *key,
size t keylen)

For use with the HMAC feature, set the MAC key to the value of key of length keylen.

After you are done with the hash calculation, you should release the resources by using:

[Function]void gcry_md_close (gcry md hd t h)
Release all resources of hash context h. h should not be used after a call to this
function. A NULL passed as h is ignored.

Often you have to do several hash operations using the same algorithm. To avoid the
overhead of creating and releasing context, a reset function is provided:

Chapter 6: Hashing 31

[Function]void gcry_md_reset (gcry md hd t h)
Reset the current context to its initial state. This is effectively identical to a close
followed by an open and enabling all currently active algorithms.

Often it is necessary to start hashing some data and then continue to hash different data.
To avoid hashing the same data several times (which might not even be possible if the data
is received from a pipe), a snapshot of the current hash context can be taken and turned
into a new context:

[Function]gcry_error_t gcry_md_copy (gcry md hd t *handle_dst,
gcry md hd t handle_src)

Create a new digest object as an exact copy of the object described by handle han-
dle src and store it in handle dst. The context is not reset and you can continue to
hash data using this context and independently using the original context.

Now that we have prepared everything to calculate hashes, it is time to see how it is
actually done. There are two ways for this, one to update the hash with a block of memory
and one macro to update the hash by just one character. Both methods can be used on the
same hash context.

[Function]void gcry_md_write (gcry md hd t h, const void *buffer, size t
length)

Pass length bytes of the data in buffer to the digest object with handle h to update
the digest values. This function should be used for large blocks of data.

[Function]void gcry_md_putc (gcry md hd t h, int c)
Pass the byte in c to the digest object with handle h to update the digest value. This
is an efficient function, implemented as a macro to buffer the data before an actual
update.

The semantics of the hash functions do not provide for reading out intermediate message
digests because the calculation must be finalized first. This finalization may for example
include the number of bytes hashed in the message digest or some padding.

[Function]void gcry_md_final (gcry md hd t h)
Finalize the message digest calculation. This is not really needed because gcry_md_
read does this implicitly. After this has been done no further updates (by means of
gcry_md_write or gcry_md_putc are allowed. Only the first call to this function has
an effect. It is implemented as a macro.

The way to read out the calculated message digest is by using the function:

[Function]unsigned char *gcry md read (gcry md hd t h, int algo)
gcry_md_read returns the message digest after finalizing the calculation. This func-
tion may be used as often as required but it will always return the same value for
one handle. The returned message digest is allocated within the message context
and therefore valid until the handle is released or reseted (using gcry_md_close or
gcry_md_reset. algo may be given as 0 to return the only enabled message digest or
it may specify one of the enabled algorithms. The function does return NULL if the
requested algorithm has not been enabled.

32 The Libgcrypt Reference Manual

Because it is often necessary to get the message digest of one block of memory, a fast
convenience function is available for this task:

[Function]void gcry_md_hash_buffer (int algo, void *digest, const void
*buffer, size t length);

gcry_md_hash_buffer is a shortcut function to calculate a message digest of a buffer.
This function does not require a context and immediately returns the message digest
of the length bytes at buffer. digest must be allocated by the caller, large enough to
hold the message digest yielded by the the specified algorithm algo. This required
size may be obtained by using the function gcry_md_get_algo_dlen.
Note that this function will abort the process if an unavailable algorithm is used.

Hash algorithms are identified by internal algorithm numbers (see gcry_md_open for a
list). However, in most applications they are used by names, so two functions are available
to map between string representations and hash algorithm identifiers.

[Function]const char *gcry md algo name (int algo)
Map the digest algorithm id algo to a string representation of the algorithm name.
For unknown algorithms this function returns the string "?". This function should
not be used to test for the availability of an algorithm.

[Function]int gcry_md_map_name (const char *name)
Map the algorithm with name to a digest algorithm identifier. Returns 0 if the algo-
rithm name is not known. Names representing ASN.1 object identifiers are recognized
if the IETF dotted format is used and the OID is prefixed with either "oid." or
"OID.". For a list of supported OIDs, see the source code at ‘cipher/md.c’. This
function should not be used to test for the availability of an algorithm.

[Function]gcry_error_t gcry_md_get_asnoid (int algo, void *buffer, size t
*length)

Return an DER encoded ASN.1 OID for the algorithm algo in the user allocated
buffer. length must point to variable with the available size of buffer and receives
after return the actual size of the returned OID. The returned error code may be GPG_
ERR_TOO_SHORT if the provided buffer is to short to receive the OID; it is possible to
call the function with NULL for buffer to have it only return the required size. The
function returns 0 on success.

To test whether an algorithm is actually available for use, the following macro should
be used:

[Function]gcry_error_t gcry_md_test_algo (int algo)
The macro returns 0 if the algorithm algo is available for use.

If the length of a message digest is not known, it can be retrieved using the following
function:

[Function]unsigned int gcry md get algo dlen (int algo)
Retrieve the length in bytes of the digest yielded by algorithm algo. This is often
used prior to gcry_md_read to allocate sufficient memory for the digest.

Chapter 6: Hashing 33

In some situations it might be hard to remember the algorithm used for the ongoing
hashing. The following function might be used to get that information:

[Function]int gcry_md_get_algo (gcry md hd t h)
Retrieve the algorithm used with the handle h. Note that this does not work reliable
if more than one algorithm is enabled in h.

The following macro might also be useful:

[Function]int gcry_md_is_secure (gcry md hd t h)
This function returns true when the digest object h is allocated in "secure memory";
i.e. h was created with the GCRY_MD_FLAG_SECURE.

[Function]int gcry_md_is_enabled (gcry md hd t h, int algo)
This function returns true when the algorithm algo has been enabled for the digest
object h.

Tracking bugs related to hashing is often a cumbersome task which requires to add a
lot of printf statements into the code. Libgcrypt provides an easy way to avoid this. The
actual data hashed can be written to files on request.

[Function]void gcry_md_debug (gcry md hd t h, const char *suffix)
Enable debugging for the digest object with handle h. This creates create files named
‘dbgmd-<n>.<string>’ while doing the actual hashing. suffix is the string part in the
filename. The number is a counter incremented for each new hashing. The data in
the file is the raw data as passed to gcry_md_write or gcry_md_putc. If NULL is used
for suffix, the debugging is stopped and the file closed. This is only rarely required
because gcry_md_close implicitly stops debugging.

The following two deprecated macros are used for debugging by old code. They shopuld
be replaced by gcry_md_debug.

[Function]void gcry_md_start_debug (gcry md hd t h, const char *suffix)
Enable debugging for the digest object with handle h. This creates create files named
‘dbgmd-<n>.<string>’ while doing the actual hashing. suffix is the string part in the
filename. The number is a counter incremented for each new hashing. The data in
the file is the raw data as passed to gcry_md_write or gcry_md_putc.

[Function]void gcry_md_stop_debug (gcry md hd t h, int reserved)
Stop debugging on handle h. reserved should be specified as 0. This function is
usually not required because gcry_md_close does implicitly stop debugging.

34 The Libgcrypt Reference Manual

Chapter 7: Public Key cryptography (I) 35

7 Public Key cryptography (I)

Public key cryptography, also known as asymmetric cryptography, is an easy way for key
management and to provide digital signatures. Libgcrypt provides two completely different
interfaces to public key cryptography, this chapter explains the one based on S-expressions.

7.1 Available algorithms

Libgcrypt supports the RSA (Rivest-Shamir-Adleman) algorithms as well as DSA (Digital
Signature Algorithm) and Elgamal. The versatile interface allows to add more algorithms
in the future.

7.2 Used S-expressions

Libgcrypt’s API for asymmetric cryptography is based on data structures called
S-expressions (see http://people.csail.mit.edu/rivest/sexp.html) and does not
work with contexts as most of the other building blocks of Libgcrypt do.

The following information are stored in S-expressions:

keys

plain text data
encrypted data
signatures

To describe how Libgcrypt expect keys, we use examples. Note that words in italics indicate
parameters whereas lowercase words are literals.

Note that all MPI (big integer) values are expected to be in GCRYMPI_FMT_USG format.
An easy way to create S-expressions is by using gcry_sexp_build which allows to pass a
string with printf-like escapes to insert MPI values.

7.2.1 RSA key parameters

An RSA private key is described by this S-expression:
(private-key
(rsa
(n n-mpi)
(e e-mpi)
(d d-mpi)
(p p-mpi)
(q q-mpi)
(u u-mpi)))

An RSA public key is described by this S-expression:
(public-key
(rsa
(n n-mpi)
(e e-mpi)))

n-mpi RSA public modulus n.

http://people.csail.mit.edu/rivest/sexp.html

36 The Libgcrypt Reference Manual

e-mpi RSA public exponent e.

d-mpi RSA secret exponent d = e−1 mod (p− 1)(q − 1).

p-mpi RSA secret prime p.

q-mpi RSA secret prime q with p < q.

u-mpi Multiplicative inverse u = p−1 mod q.

For signing and decryption the parameters (p, q, u) are optional but greatly improve the
performance. Either all of these optional parameters must be given or none of them. They
are mandatory for gcry pk testkey.

Note that OpenSSL uses slighly different parameters: q < p and u = q−1 mod p. To use
these parameters you will need to swap the values and recompute u. Here is example code
to do this:

if (gcry_mpi_cmp (p, q) > 0)
{

gcry_mpi_swap (p, q);
gcry_mpi_invm (u, p, q);

}

7.2.2 DSA key parameters

A DSA private key is described by this S-expression:
(private-key
(dsa
(p p-mpi)
(q q-mpi)
(g g-mpi)
(y y-mpi)
(x x-mpi)))

p-mpi DSA prime p.

q-mpi DSA group order q (which is a prime divisor of p− 1).

g-mpi DSA group generator g.

y-mpi DSA public key value y = gx mod p.

x-mpi DSA secret exponent x.

The public key is similar with "private-key" replaced by "public-key" and no x-mpi.

7.2.3 ECC key parameters

An ECC private key is described by this S-expression:
(private-key

(ecc
(p p-mpi)
(a a-mpi)
(b b-mpi)
(g g-point)

Chapter 7: Public Key cryptography (I) 37

(n n-mpi)
(q q-point)
(d d-mpi)))

p-mpi Prime specifying the field GF (p).

a-mpi
b-mpi The two coefficients of the Weierstrass equation y2 = x3 + ax + b

g-point Base point g.

n-mpi Order of g

q-point The point representing the public key Q = dP .

d-mpi The private key d

All point values are encoded in standard format; Libgcrypt does currently only support
uncompressed points, thus the first byte needs to be 0x04.

The public key is similar with "private-key" replaced by "public-key" and no d-mpi.
If the domain parameters are well-known, the name of this curve may be used. For

example
(private-key

(ecc
(curve "NIST P-192")
(q q-point)
(d d-mpi)))

The curve parameter may be given in any case and is used to replace missing parameters.
Currently implemented curves are:

NIST P-192
1.2.840.10045.3.1.1
prime192v1
secp192r1

The NIST 192 bit curve, its OID, X9.62 and SECP aliases.

NIST P-224
secp224r1

The NIST 224 bit curve and its SECP alias.

NIST P-256
1.2.840.10045.3.1.7
prime256v1
secp256r1

The NIST 256 bit curve, its OID, X9.62 and SECP aliases.

NIST P-384
secp384r1

The NIST 384 bit curve and its SECP alias.

NIST P-521
secp521r1

The NIST 521 bit curve and its SECP alias.

As usual the OIDs may optionally be prefixed with the string OID. or oid..

38 The Libgcrypt Reference Manual

7.3 Public key modules

Libgcrypt makes it possible to load additional ‘public key modules’; these public key algo-
rithms can be used just like the algorithms that are built into the library directly. For an
introduction into extension modules, see See Section 3.2 [Modules], page 9.

[Data type]gcry_pk_spec_t
This is the ‘module specification structure’ needed for registering public key modules,
which has to be filled in by the user before it can be used to register a module. It
contains the following members:

const char *name
The primary name of this algorithm.

char **aliases
A list of strings that are ‘aliases’ for the algorithm. The list must be
terminated with a NULL element.

const char *elements_pkey
String containing the one-letter names of the MPI values contained in a
public key.

const char *element_skey
String containing the one-letter names of the MPI values contained in a
secret key.

const char *elements_enc
String containing the one-letter names of the MPI values that are the
result of an encryption operation using this algorithm.

const char *elements_sig
String containing the one-letter names of the MPI values that are the
result of a sign operation using this algorithm.

const char *elements_grip
String containing the one-letter names of the MPI values that are to be
included in the ‘key grip’.

int use The bitwise-OR of the following flags, depending on the abilities of the
algorithm:

GCRY_PK_USAGE_SIGN
The algorithm supports signing and verifying of data.

GCRY_PK_USAGE_ENCR
The algorithm supports the encryption and decryption of
data.

gcry_pk_generate_t generate
The function responsible for generating a new key pair. See below for a
description of this type.

gcry_pk_check_secret_key_t check_secret_key
The function responsible for checking the sanity of a provided secret key.
See below for a description of this type.

Chapter 7: Public Key cryptography (I) 39

gcry_pk_encrypt_t encrypt
The function responsible for encrypting data. See below for a description
of this type.

gcry_pk_decrypt_t decrypt
The function responsible for decrypting data. See below for a description
of this type.

gcry_pk_sign_t sign
The function responsible for signing data. See below for a description of
this type.

gcry_pk_verify_t verify
The function responsible for verifying that the provided signature matches
the provided data. See below for a description of this type.

gcry_pk_get_nbits_t get_nbits
The function responsible for returning the number of bits of a provided
key. See below for a description of this type.

[Data type]gcry_pk_generate_t
Type for the ‘generate’ function, defined as: gcry err code t (*gcry pk generate t)
(int algo, unsigned int nbits, unsigned long use e, gcry mpi t *skey, gcry mpi t **ret-
factors)

[Data type]gcry_pk_check_secret_key_t
Type for the ‘check secret key’ function, defined as: gcry err code t
(*gcry pk check secret key t) (int algo, gcry mpi t *skey)

[Data type]gcry_pk_encrypt_t
Type for the ‘encrypt’ function, defined as: gcry err code t (*gcry pk encrypt t) (int
algo, gcry mpi t *resarr, gcry mpi t data, gcry mpi t *pkey, int flags)

[Data type]gcry_pk_decrypt_t
Type for the ‘decrypt’ function, defined as: gcry err code t (*gcry pk decrypt t) (int
algo, gcry mpi t *result, gcry mpi t *data, gcry mpi t *skey, int flags)

[Data type]gcry_pk_sign_t
Type for the ‘sign’ function, defined as: gcry err code t (*gcry pk sign t) (int algo,
gcry mpi t *resarr, gcry mpi t data, gcry mpi t *skey)

[Data type]gcry_pk_verify_t
Type for the ‘verify’ function, defined as: gcry err code t (*gcry pk verify t) (int
algo, gcry mpi t hash, gcry mpi t *data, gcry mpi t *pkey, int (*cmp) (void *,
gcry mpi t), void *opaquev)

[Data type]gcry_pk_get_nbits_t
Type for the ‘get nbits’ function, defined as: unsigned (*gcry pk get nbits t) (int
algo, gcry mpi t *pkey)

40 The Libgcrypt Reference Manual

[Function]gcry_error_t gcry_pk_register (gcry pk spec t *pubkey, unsigned
int *algorithm id, gcry module t *module)

Register a new public key module whose specification can be found in pubkey. On
success, a new algorithm ID is stored in algorithm id and a pointer representing this
module is stored in module.

[Function]void gcry_pk_unregister (gcry module t module)
Unregister the public key module identified by module, which must have been regis-
tered with gcry pk register.

[Function]gcry_error_t gcry_pk_list (int *list, int *list_length)
Get a list consisting of the IDs of the loaded pubkey modules. If list is zero, write the
number of loaded pubkey modules to list length and return. If list is non-zero, the
first *list length algorithm IDs are stored in list, which must be of according size. In
case there are less pubkey modules than *list length, *list length is updated to the
correct number.

7.4 Cryptographic Functions

Note that we will in future allow to use keys without p,q and u specified and may also
support other parameters for performance reasons.

Some functions operating on S-expressions support ‘flags’, that influence the operation.
These flags have to be listed in a sub-S-expression named ‘flags’; the following flags are
known:

pkcs1 Use PKCS#1 block type 2 padding.

no-blinding
Do not use a technique called ‘blinding’, which is used by default in order to
prevent leaking of secret information. Blinding is only implemented by RSA,
but it might be implemented by other algorithms in the future as well, when
necessary.

Now that we know the key basics, we can carry on and explain how to encrypt and decrypt
data. In almost all cases the data is a random session key which is in turn used for the
actual encryption of the real data. There are 2 functions to do this:

[Function]gcry_error_t gcry_pk_encrypt (gcry sexp t *r_ciph,
gcry sexp t data, gcry sexp t pkey)

Obviously a public key must be provided for encryption. It is expected as an ap-
propriate S-expression (see above) in pkey. The data to be encrypted can either be
in the simple old format, which is a very simple S-expression consisting only of one
MPI, or it may be a more complex S-expression which also allows to specify flags for
operation, like e.g. padding rules.
If you don’t want to let Libgcrypt handle the padding, you must pass an appropriate
MPI using this expression for data:

(data
(flags raw)
(value mpi))

Chapter 7: Public Key cryptography (I) 41

This has the same semantics as the old style MPI only way. MPI is the actual data,
already padded appropriate for your protocol. Most systems however use PKCS#1
padding and so you can use this S-expression for data:

(data
(flags pkcs1)
(value block))

Here, the "flags" list has the "pkcs1" flag which let the function know that it should
provide PKCS#1 block type 2 padding. The actual data to be encrypted is passed
as a string of octets in block. The function checks that this data actually can be used
with the given key, does the padding and encrypts it.
If the function could successfully perform the encryption, the return value will be 0
and a a new S-expression with the encrypted result is allocated and assigned to the
variable at the address of r ciph. The caller is responsible to release this value using
gcry_sexp_release. In case of an error, an error code is returned and r ciph will be
set to NULL.
The returned S-expression has this format when used with RSA:

(enc-val
(rsa

(a a-mpi)))

Where a-mpi is an MPI with the result of the RSA operation. When using the
Elgamal algorithm, the return value will have this format:

(enc-val
(elg

(a a-mpi)
(b b-mpi)))

Where a-mpi and b-mpi are MPIs with the result of the Elgamal encryption operation.

[Function]gcry_error_t gcry_pk_decrypt (gcry sexp t *r_plain,
gcry sexp t data, gcry sexp t skey)

Obviously a private key must be provided for decryption. It is expected as an appro-
priate S-expression (see above) in skey. The data to be decrypted must match the
format of the result as returned by gcry_pk_encrypt, but should be enlarged with a
flags element:

(enc-val
(flags)
(elg
(a a-mpi)
(b b-mpi)))

Note that this function currently does not know of any padding methods and the
caller must do any un-padding on his own.
The function returns 0 on success or an error code. The variable at the address of
r plain will be set to NULL on error or receive the decrypted value on success. The
format of r plain is a simple S-expression part (i.e. not a valid one) with just one
MPI if there was no flags element in data; if at least an empty flags is passed in
data, the format is:

42 The Libgcrypt Reference Manual

(value plaintext)

Another operation commonly performed using public key cryptography is signing data.
In some sense this is even more important than encryption because digital signatures are
an important instrument for key management. Libgcrypt supports digital signatures using
2 functions, similar to the encryption functions:

[Function]gcry_error_t gcry_pk_sign (gcry sexp t *r_sig, gcry sexp t data,
gcry sexp t skey)

This function creates a digital signature for data using the private key skey and place
it into the variable at the address of r sig. data may either be the simple old style
S-expression with just one MPI or a modern and more versatile S-expression which
allows to let Libgcrypt handle padding:

(data
(flags pkcs1)
(hash hash-algo block))

This example requests to sign the data in block after applying PKCS#1 block type
1 style padding. hash-algo is a string with the hash algorithm to be encoded into the
signature, this may be any hash algorithm name as supported by Libgcrypt. Most
likely, this will be "sha1", "rmd160" or "md5". It is obvious that the length of block
must match the size of that message digests; the function checks that this and other
constraints are valid.

If PKCS#1 padding is not required (because the caller does already provide a padded
value), either the old format or better the following format should be used:

(data
(flags raw)
(value mpi))

Here, the data to be signed is directly given as an MPI.

The signature is returned as a newly allocated S-expression in r sig using this format
for RSA:

(sig-val
(rsa

(s s-mpi)))

Where s-mpi is the result of the RSA sign operation. For DSA the S-expression
returned is:

(sig-val
(dsa

(r r-mpi)
(s s-mpi)))

Where r-mpi and s-mpi are the result of the DSA sign operation. For Elgamal sign-
ing (which is slow, yields large numbers and probably is not as secure as the other
algorithms), the same format is used with "elg" replacing "dsa".

The operation most commonly used is definitely the verification of a signature. Libgcrypt
provides this function:

Chapter 7: Public Key cryptography (I) 43

[Function]gcry_error_t gcry_pk_verify (gcry sexp t sig , gcry sexp t data ,
gcry sexp t pkey)

This is used to check whether the signature sig matches the data. The public key
pkey must be provided to perform this verification. This function is similar in its
parameters to gcry_pk_sign with the exceptions that the public key is used instead
of the private key and that no signature is created but a signature, in a format as
created by gcry_pk_sign, is passed to the function in sig.
The result is 0 for success (i.e. the data matches the signature), or an error code where
the most relevant code is GCRYERR_BAD_SIGNATURE to indicate that the signature does
not match the provided data.

7.5 General public-key related Functions

A couple of utility functions are available to retrieve the length of the key, map algorithm
identifiers and perform sanity checks:

[Function]const char * gcry_pk_algo_name (int algo)
Map the public key algorithm id algo to a string representation of the algorithm name.
For unknown algorithms this functions returns the string "?". This function should
not be used to test for the availability of an algorithm.

[Function]int gcry_pk_map_name (const char *name)
Map the algorithm name to a public key algorithm Id. Returns 0 if the algorithm
name is not known.

[Function]int gcry_pk_test_algo (int algo)
Return 0 if the public key algorithm algo is available for use. Note that this is
implemented as a macro.

[Function]unsigned int gcry_pk_get_nbits (gcry sexp t key)
Return what is commonly referred as the key length for the given public or private
in key.

[Function]unsigned char * gcry_pk_get_keygrip (gcry sexp t key ,
unsigned char *array)

Return the so called "keygrip" which is the SHA-1 hash of the public key parameters
expressed in a way depended on the algorithm. array must either provide space for
20 bytes or be NULL. In the latter case a newly allocated array of that size is returned.
On success a pointer to the newly allocated space or to array is returned. NULL is
returned to indicate an error which is most likely an unknown algorithm or one where
a "keygrip" has not yet been defined. The function accepts public or secret keys in
key.

[Function]gcry_error_t gcry_pk_testkey (gcry sexp t key)
Return zero if the private key key is ‘sane’, an error code otherwise. Note that it is
not possible to check the ‘saneness’ of a public key.

[Function]gcry_error_t gcry_pk_algo_info (int algo , int what ,
void *buffer , size t *nbytes)

Depending on the value of what return various information about the public key
algorithm with the id algo. Note that the function returns -1 on error and the actual

44 The Libgcrypt Reference Manual

error code must be retrieved using the function gcry_errno. The currently defined
values for what are:

GCRYCTL_TEST_ALGO:
Return 0 when the specified algorithm is available for use. buffer must
be NULL, nbytes may be passed as NULL or point to a variable with the
required usage of the algorithm. This may be 0 for "don’t care" or the
bit-wise OR of these flags:

GCRY_PK_USAGE_SIGN
Algorithm is usable for signing.

GCRY_PK_USAGE_ENCR
Algorithm is usable for encryption.

GCRYCTL_GET_ALGO_USAGE:
Return the usage flags for the given algorithm. An invalid algorithm
return 0. Disabled algorithms are ignored here because we want to know
whether the algorithm is at all capable of a certain usage.

GCRYCTL_GET_ALGO_NPKEY
Return the number of elements the public key for algorithm algo consist
of. Return 0 for an unknown algorithm.

GCRYCTL_GET_ALGO_NSKEY
Return the number of elements the private key for algorithm algo consist
of. Note that this value is always larger than that of the public key.
Return 0 for an unknown algorithm.

GCRYCTL_GET_ALGO_NSIGN
Return the number of elements a signature created with the algorithm
algo consists of. Return 0 for an unknown algorithm or for an algorithm
not capable of creating signatures.

GCRYCTL_GET_ALGO_NENC
Return the number of elements a encrypted message created with the
algorithm algo consists of. Return 0 for an unknown algorithm or for an
algorithm not capable of encryption.

Please note that parameters not required should be passed as NULL.

[Function]gcry_error_t gcry_pk_ctl (int cmd , void *buffer , size t buflen)
This is a general purpose function to perform certain control operations. cmd controls
what is to be done. The return value is 0 for success or an error code. Currently
supported values for cmd are:

GCRYCTL_DISABLE_ALGO
Disable the algorithm given as an algorithm id in buffer. buffer must
point to an int variable with the algorithm id and buflen must have the
value sizeof (int).

Libgcrypt also provides a function for generating public key pairs:

Chapter 7: Public Key cryptography (I) 45

[Function]gcry_error_t gcry_pk_genkey (gcry sexp t *r_key ,
gcry sexp t parms)

This function create a new public key pair using information given in the S-expression
parms and stores the private and the public key in one new S-expression at the address
given by r key. In case of an error, r key is set to NULL. The return code is 0 for
success or an error code otherwise.
Here is an example for parms for creating a 1024 bit RSA key:

(genkey
(rsa
(nbits 4:1024)))

To create an Elgamal key, substitute "elg" for "rsa" and to create a DSA key use
"dsa". Valid ranges for the key length depend on the algorithms; all commonly used
key lengths are supported. Currently supported parameters are:

nbits This is always required to specify the length of the key. The argument is
a string with a number in C-notation. The value should be a multiple of
8.

curve name

For ECC a named curve may be used instead of giving the number of
requested bits. This allows to request a specific curve to override a de-
fault selection Libgcrypt would have taken if nbits has been given. The
available names are listed with the description of the ECC public key
parameters.

rsa-use-e
This is only used with RSA to give a hint for the public exponent. The
value will be used as a base to test for a usable exponent. Some values
are special:

‘0’ Use a secure and fast value. This is currently the number 41.

‘1’ Use a secure value as required by some specification. This is
currently the number 65537.

‘2’ Reserved

If this parameter is not used, Libgcrypt uses for historic reasons 65537.

qbits This is only meanigful for DSA keys. If it is given the DSA key is gen-
erated with a Q parameyer of this size. If it is not given or zero Q is
deduced from NBITS in this way:

‘512 <= N <= 1024’
Q = 160

‘N = 2048’ Q = 224

‘N = 3072’ Q = 256

‘N = 7680’ Q = 384

‘N = 15360’
Q = 512

46 The Libgcrypt Reference Manual

Note that in this case only the values for N, as given in the table, are
allowed. When specifying Q all values of N in the range 512 to 15680 are
valid as long as they are multiples of 8.

The key pair is returned in a format depending on the algorithm. Both private
and public keys are returned in one container and may be accompanied by some
miscellaneous information.
As an example, here is what the Elgamal key generation returns:

(key-data
(public-key
(elg
(p p-mpi)
(g g-mpi)
(y y-mpi)))

(private-key
(elg
(p p-mpi)
(g g-mpi)
(y y-mpi)
(x x-mpi)))

(misc-key-info
(pm1-factors n1 n2 ... nn)))

As you can see, some of the information is duplicated, but this provides an easy way
to extract either the public or the private key. Note that the order of the elements is
not defined, e.g. the private key may be stored before the public key. n1 n2 ... nn is
a list of prime numbers used to composite p-mpi; this is in general not a very useful
information.

Chapter 8: Public Key cryptography (II) 47

8 Public Key cryptography (II)

This chapter documents the alternative interface to asymmetric cryptography (ac) that
is not based on S-expressions, but on native C data structures. As opposed to the pk
interface described in the former chapter, this one follows an open/use/close paradigm like
other building blocks of the library.

This interface has a few known problems; most noteworthy an inherent tendency to leak
memory. It might not be available in forthcoming versions Libgcrypt.

8.1 Available asymmetric algorithms

Libgcrypt supports the RSA (Rivest-Shamir-Adleman) algorithms as well as DSA (Digital
Signature Algorithm) and Elgamal. The versatile interface allows to add more algorithms
in the future.

[Data type]gcry_ac_id_t
The following constants are defined for this type:

GCRY_AC_RSA
Rivest-Shamir-Adleman

GCRY_AC_DSA
Digital Signature Algorithm

GCRY_AC_ELG
Elgamal

GCRY_AC_ELG_E
Elgamal, encryption only.

8.2 Working with sets of data

In the context of this interface the term ‘data set’ refers to a list of ‘named MPI values’
that is used by functions performing cryptographic operations; a named MPI value is a an
MPI value, associated with a label.

Such data sets are used for representing keys, since keys simply consist of a variable
amount of numbers. Furthermore some functions return data sets to the caller that are to
be provided to other functions.

This section documents the data types, symbols and functions that are relevant for
working with data sets.

[Data type]gcry_ac_data_t
A single data set.

The following flags are supported:

GCRY_AC_FLAG_DEALLOC
Used for storing data in a data set. If given, the data will be released by the
library. Note that whenever one of the ac functions is about to release objects
because of this flag, the objects are expected to be stored in memory allocated
through the Libgcrypt memory management. In other words: gcry free() is
used instead of free().

48 The Libgcrypt Reference Manual

GCRY_AC_FLAG_COPY
Used for storing/retrieving data in/from a data set. If given, the library will
create copies of the provided/contained data, which will then be given to the
user/associated with the data set.

[Function]gcry_error_t gcry_ac_data_new (gcry ac data t *data)
Creates a new, empty data set and stores it in data.

[Function]void gcry_ac_data_destroy (gcry ac data t data)
Destroys the data set data.

[Function]gcry_error_t gcry_ac_data_set (gcry ac data t data, unsigned int
flags, char *name, gcry mpi t mpi)

Add the value mpi to data with the label name. If flags contains
GCRY AC FLAG COPY, the data set will contain copies of name and
mpi. If flags contains GCRY AC FLAG DEALLOC or GCRY AC FLAG COPY,
the values contained in the data set will be deallocated when they are to be removed
from the data set.

[Function]gcry_error_t gcry_ac_data_copy (gcry ac data t *data_cp,
gcry ac data t data)

Create a copy of the data set data and store it in data cp. FIXME: exact semantics
undefined.

[Function]unsigned int gcry ac data length (gcry ac data t data)
Returns the number of named MPI values inside of the data set data.

[Function]gcry_error_t gcry_ac_data_get_name (gcry ac data t data,
unsigned int flags, char *name, gcry mpi t *mpi)

Store the value labelled with name found in data in mpi. If flags contains
GCRY AC FLAG COPY, store a copy of the mpi value contained in the data set.
mpi may be NULL (this might be useful for checking the existence of an MPI with
extracting it).

[Function]gcry_error_t gcry_ac_data_get_index (gcry ac data t data,
unsigned int flags, unsigned int index, const char **name, gcry mpi t *mpi)

Stores in name and mpi the named mpi value contained in the data set data with
the index idx. If flags contains GCRY AC FLAG COPY, store copies of the values
contained in the data set. name or mpi may be NULL.

[Function]void gcry_ac_data_clear (gcry ac data t data)
Destroys any values contained in the data set data.

[Function]gcry_error_t gcry_ac_data_to_sexp (gcry ac data t data,
gcry sexp t *sexp, const char **identifiers)

This function converts the data set data into a newly created S-Expression, which is
to be stored in sexp; identifiers is a NULL terminated list of C strings, which specifies
the structure of the S-Expression.
Example:

Chapter 8: Public Key cryptography (II) 49

If identifiers is a list of pointers to the strings “foo” and “bar” and if data is a
data set containing the values “val1 = 0x01” and “val2 = 0x02”, then the resulting
S-Expression will look like this: (foo (bar ((val1 0x01) (val2 0x02))).

[Function]gcry_error gcry_ac_data_from_sexp (gcry ac data t *data,
gcry sexp t sexp, const char **identifiers)

This function converts the S-Expression sexp into a newly created data set, which is
to be stored in data; identifiers is a NULL terminated list of C strings, which specifies
the structure of the S-Expression. If the list of identifiers does not match the structure
of the S-Expression, the function fails.

8.3 Working with IO objects

Note: IO objects are currently only used in the context of message encoding/decoding and
encryption/signature schemes.

[Data type]gcry_ac_io_t
gcry_ac_io_t is the type to be used for IO objects.

IO objects provide an uniform IO layer on top of different underlying IO
mechanisms; either they can be used for providing data to the library (mode is
GCRY AC IO READABLE) or they can be used for retrieving data from the library
(mode is GCRY AC IO WRITABLE).

IO object need to be initialized by calling on of the following functions:

[Function]void gcry_ac_io_init (gcry ac io t *ac_io, gcry ac io mode t mode,
gcry ac io type t type, ...);

Initialize ac io according to mode, type and the variable list of arguments. The list
of variable arguments to specify depends on the given type.

[Function]void gcry_ac_io_init_va (gcry ac io t *ac_io, gcry ac io mode t
mode, gcry ac io type t type, va list ap);

Initialize ac io according to mode, type and the variable list of arguments ap. The
list of variable arguments to specify depends on the given type.

The following types of IO objects exist:

GCRY_AC_IO_STRING
In case of GCRY AC IO READABLE the IO object will provide data from a
memory string. Arguments to specify at initialization time:

unsigned char *
Pointer to the beginning of the memory string

size_t Size of the memory string

In case of GCRY AC IO WRITABLE the object will store retrieved data in a
newly allocated memory string. Arguments to specify at initialization time:

unsigned char **
Pointer to address, at which the pointer to the newly created mem-
ory string is to be stored

50 The Libgcrypt Reference Manual

size_t * Pointer to address, at which the size of the newly created memory
string is to be stored

GCRY_AC_IO_CALLBACK
In case of GCRY AC IO READABLE the object will forward read requests to
a provided callback function. Arguments to specify at initialization time:

gcry_ac_data_read_cb_t
Callback function to use

void * Opaque argument to provide to the callback function

In case of GCRY AC IO WRITABLE the object will forward write requests to
a provided callback function. Arguments to specify at initialization time:

gcry_ac_data_write_cb_t
Callback function to use

void * Opaque argument to provide to the callback function

8.4 Working with handles

In order to use an algorithm, an according handle must be created. This is done using the
following function:

[Function]gcry_error_t gcry_ac_open (gcry ac handle t *handle, int
algorithm, int flags)

Creates a new handle for the algorithm algorithm and stores it in handle. flags is not
used currently.
algorithm must be a valid algorithm ID, see See Section 8.1 [Available asymmetric
algorithms], page 47, for a list of supported algorithms and the according constants.
Besides using the listed constants directly, the functions gcry_pk_name_to_id may
be used to convert the textual name of an algorithm into the according numeric ID.

[Function]void gcry_ac_close (gcry ac handle t handle)
Destroys the handle handle.

8.5 Working with keys

[Data type]gcry_ac_key_type_t
Defined constants:

GCRY_AC_KEY_SECRET
Specifies a secret key.

GCRY_AC_KEY_PUBLIC
Specifies a public key.

[Data type]gcry_ac_key_t
This type represents a single ‘key’, either a secret one or a public one.

[Data type]gcry_ac_key_pair_t
This type represents a ‘key pair’ containing a secret and a public key.

Chapter 8: Public Key cryptography (II) 51

Key data structures can be created in two different ways; a new key pair can be generated,
resulting in ready-to-use key. Alternatively a key can be initialized from a given data set.

[Function]gcry_error_t gcry_ac_key_init (gcry ac key t *key,
gcry ac handle t handle, gcry ac key type t type, gcry ac data t data)

Creates a new key of type type, consisting of the MPI values contained in the data
set data and stores it in key.

[Function]gcry_error_t gcry_ac_key_pair_generate (gcry ac handle t
handle, unsigned int nbits, void *key_spec, gcry ac key pair t *key_pair,
gcry mpi t **misc_data)

Generates a new key pair via the handle handle of NBITS bits and stores it in
key pair.
In case non-standard settings are wanted, a pointer to a structure of type gcry_ac_
key_spec_<algorithm>_t, matching the selected algorithm, can be given as key spec.
misc data is not used yet. Such a structure does only exist for RSA. A description of
the members of the supported structures follows.

gcry_ac_key_spec_rsa_t

gcry_mpi_t e
Generate the key pair using a special e. The value of e has
the following meanings:

= 0 Let Libgcrypt decide what exponent should be
used.

= 1 Request the use of a “secure” exponent; this is
required by some specification to be 65537.

> 2 Try starting at this value until a working expo-
nent is found. Note that the current implemen-
tation leaks some information about the private
key because the incrementation used is not ran-
domized. Thus, this function will be changed in
the future to return a random exponent of the
given size.

Example code:
{

gcry_ac_key_pair_t key_pair;
gcry_ac_key_spec_rsa_t rsa_spec;

rsa_spec.e = gcry_mpi_new (0);
gcry_mpi_set_ui (rsa_spec.e, 1);

err = gcry_ac_open (&handle, GCRY_AC_RSA, 0);
assert (! err);

err = gcry_ac_key_pair_generate (handle, 1024, &rsa_spec, &key_pair, NULL);
assert (! err);

}

52 The Libgcrypt Reference Manual

[Function]gcry_ac_key_t gcry_ac_key_pair_extract (gcry ac key pair t
key_pair, gcry ac key type t which)

Returns the key of type which out of the key pair key pair.

[Function]void gcry_ac_key_destroy (gcry ac key t key)
Destroys the key key.

[Function]void gcry_ac_key_pair_destroy (gcry ac key pair t key_pair)
Destroys the key pair key pair.

[Function]gcry_ac_data_t gcry_ac_key_data_get (gcry ac key t key)
Returns the data set contained in the key key.

[Function]gcry_error_t gcry_ac_key_test (gcry ac handle t handle,
gcry ac key t key)

Verifies that the private key key is sane via handle.

[Function]gcry_error_t gcry_ac_key_get_nbits (gcry ac handle t handle,
gcry ac key t key, unsigned int *nbits)

Stores the number of bits of the key key in nbits via handle.

[Function]gcry_error_t gcry_ac_key_get_grip (gcry ac handle t handle,
gcry ac key t key, unsigned char *key_grip)

Writes the 20 byte long key grip of the key key to key grip via handle.

8.6 Using cryptographic functions

The following flags might be relevant:

GCRY_AC_FLAG_NO_BLINDING
Disable any blinding, which might be supported by the chosen algorithm; blind-
ing is the default.

There exist two kinds of cryptographic functions available through the ac interface:
primitives, and high-level functions.

Primitives deal with MPIs (data sets) directly; what they provide is direct access to the
cryptographic operations provided by an algorithm implementation.

High-level functions deal with octet strings, according to a specified “scheme”. Schemes
make use of “encoding methods”, which are responsible for converting the provided octet
strings into MPIs, which are then forwared to the cryptographic primitives. Since schemes
are to be used for a special purpose in order to achieve a particular security goal, there exist
“encryption schemes” and “signature schemes”. Encoding methods can be used seperately
or implicitly through schemes.

What follows is a description of the cryptographic primitives.

[Function]gcry_error_t gcry_ac_data_encrypt (gcry ac handle t handle,
unsigned int flags, gcry ac key t key, gcry mpi t data_plain,
gcry ac data t *data_encrypted)

Encrypts the plain text MPI value data plain with the key public key under the
control of the flags flags and stores the resulting data set into data encrypted.

Chapter 8: Public Key cryptography (II) 53

[Function]gcry_error_t gcry_ac_data_decrypt (gcry ac handle t handle,
unsigned int flags, gcry ac key t key, gcry mpi t *data_plain,
gcry ac data t data_encrypted)

Decrypts the encrypted data contained in the data set data encrypted with the secret
key KEY under the control of the flags flags and stores the resulting plain text MPI
value in DATA PLAIN.

[Function]gcry_error_t gcry_ac_data_sign (gcry ac handle t handle,
gcry ac key t key, gcry mpi t data, gcry ac data t *data_signature)

Signs the data contained in data with the secret key key and stores the resulting
signature in the data set data signature.

[Function]gcry_error_t gcry_ac_data_verify (gcry ac handle t handle,
gcry ac key t key, gcry mpi t data, gcry ac data t data_signature)

Verifies that the signature contained in the data set data signature is indeed the result
of signing the data contained in data with the secret key belonging to the public key
key.

What follows is a description of the high-level functions.

The type “gcry ac em t” is used for specifying encoding methods; the following methods
are supported:

GCRY_AC_EME_PKCS_V1_5
PKCS-V1 5 Encoding Method for Encryption. Options must be
provided through a pointer to a correctly initialized object of type
gcry ac eme pkcs v1 5 t.

GCRY_AC_EMSA_PKCS_V1_5
PKCS-V1 5 Encoding Method for Signatures with Appendix. Options
must be provided through a pointer to a correctly initialized object of type
gcry ac emsa pkcs v1 5 t.

Option structure types:

gcry_ac_eme_pkcs_v1_5_t

gcry_ac_key_t key
gcry_ac_handle_t handle

gcry_ac_emsa_pkcs_v1_5_t

gcry_md_algo_t md
size_t em_n

Encoding methods can be used directly through the following functions:

[Function]gcry_error_t gcry_ac_data_encode (gcry ac em t method, unsigned
int flags, void *options, unsigned char *m, size t m_n, unsigned char **em,
size t *em_n)

Encodes the message contained in m of size m n according to method, flags and
options. The newly created encoded message is stored in em and em n.

54 The Libgcrypt Reference Manual

[Function]gcry_error_t gcry_ac_data_decode (gcry ac em t method, unsigned
int flags, void *options, unsigned char *em, size t em_n, unsigned char **m,
size t *m_n)

Decodes the message contained in em of size em n according to method, flags and
options. The newly created decoded message is stored in m and m n.

The type “gcry ac scheme t” is used for specifying schemes; the following schemes are
supported:

GCRY_AC_ES_PKCS_V1_5
PKCS-V1 5 Encryption Scheme. No options can be provided.

GCRY_AC_SSA_PKCS_V1_5
PKCS-V1 5 Signature Scheme (with Appendix). Options can be
provided through a pointer to a correctly initialized object of type
gcry ac ssa pkcs v1 5 t.

Option structure types:

gcry_ac_ssa_pkcs_v1_5_t

gcry_md_algo_t md

The functions implementing schemes:

[Function]gcry_error_t gcry_ac_data_encrypt_scheme (gcry ac handle t
handle, gcry ac scheme t scheme, unsigned int flags, void *opts,
gcry ac key t key, gcry ac io t *io_message, gcry ac io t *io_cipher)

Encrypts the plain text readable from io message through handle with the public key
key according to scheme, flags and opts. If opts is not NULL, it has to be a pointer
to a structure specific to the chosen scheme (gcry ac es * t). The encrypted message
is written to io cipher.

[Function]gcry_error_t gcry_ac_data_decrypt_scheme (gcry ac handle t
handle, gcry ac scheme t scheme, unsigned int flags, void *opts,
gcry ac key t key, gcry ac io t *io_cipher, gcry ac io t *io_message)

Decrypts the cipher text readable from io cipher through handle with the secret key
key according to scheme, flags and opts. If opts is not NULL, it has to be a pointer
to a structure specific to the chosen scheme (gcry ac es * t). The decrypted message
is written to io message.

[Function]gcry_error_t gcry_ac_data_sign_scheme (gcry ac handle t
handle, gcry ac scheme t scheme, unsigned int flags, void *opts,
gcry ac key t key, gcry ac io t *io_message, gcry ac io t *io_signature)

Signs the message readable from io message through handle with the secret key key
according to scheme, flags and opts. If opts is not NULL, it has to be a pointer to
a structure specific to the chosen scheme (gcry ac ssa * t). The signature is written
to io signature.

[Function]gcry_error_t gcry_ac_data_verify_scheme (gcry ac handle t
handle, gcry ac scheme t scheme, unsigned int flags, void *opts,
gcry ac key t key, gcry ac io t *io_message, gcry ac io t *io_signature)

Verifies through handle that the signature readable from io signature is indeed the
result of signing the message readable from io message with the secret key belonging

Chapter 8: Public Key cryptography (II) 55

to the public key key according to scheme and opts. If opts is not NULL, it has to
be an anonymous structure (gcry ac ssa * t) specific to the chosen scheme.

8.7 Handle-independent functions

These two functions are deprecated; do not use them for new code.

[Function]gcry_error_t gcry_ac_id_to_name (gcry ac id t algorithm, const
char **name)

Stores the textual representation of the algorithm whose id is given in algorithm in
name. Deprecated; use gcry_pk_algo_name.

[Function]gcry_error_t gcry_ac_name_to_id (const char *name, gcry ac id t
*algorithm)

Stores the numeric ID of the algorithm whose textual representation is contained in
name in algorithm. Deprecated; use gcry_pk_map_name.

56 The Libgcrypt Reference Manual

Chapter 9: Random Numbers 57

9 Random Numbers

9.1 Quality of random numbers

Libgcypt offers random numbers of different quality levels:

[Data type]enum gcry random level
The constants for the random quality levels are of this type.

GCRY_WEAK_RANDOM
This should not anymore be used. It has recently been changed to an alias of
GCRY STRONG RANDOM. Use gcry_create_nonce instead.

GCRY_STRONG_RANDOM
Use this level for e.g. session keys and similar purposes.

GCRY_VERY_STRONG_RANDOM
Use this level for e.g. key material.

9.2 Retrieving random numbers

[Function]void gcry_randomize (unsigned char *buffer, size t length, enum
gcry random level level)

Fill buffer with length random bytes using a random quality as defined by level.

[Function]void * gcry random bytes (size t nbytes, enum gcry random level
level)

Allocate a memory block consisting of nbytes fresh random bytes using a random
quality as defined by level.

[Function]void * gcry random bytes secure (size t nbytes, enum
gcry random level level)

Allocate a memory block consisting of nbytes fresh random bytes using a random
quality as defined by level. This function differs from gcry_random_bytes in that
the returned buffer is allocated in a “secure” area of the memory.

[Function]void gcry_create_nonce (unsigned char *buffer, size t length)
Fill buffer with length unpredictable bytes. This is commonly called a nonce and
may also be used for initialization vectors and padding. This is an extra function
nearly independent of the other random function for 3 reasons: It better protects the
regular random generator’s internal state, provides better performance and does not
drain the precious entropy pool.

58 The Libgcrypt Reference Manual

Chapter 10: S-expressions 59

10 S-expressions

S-expressions are used by the public key functions to pass complex data struc-
tures around. These LISP like objects are used by some cryptographic protocols
(cf. RFC-2692) and Libgcrypt provides functions to parse and construct them.
For detailed information, see Ron Rivest, code and description of S-expressions,
http://theory.lcs.mit.edu/~rivest/sexp.html.

10.1 Data types for S-expressions

[Data type]gcry_sexp_t
The gcry_sexp_t type describes an object with the Libgcrypt internal representation
of an S-expression.

10.2 Working with S-expressions

There are several functions to create an Libgcrypt S-expression object from its external
representation or from a string template. There is also a function to convert the internal
representation back into one of the external formats:

[Function]gcry_error_t gcry_sexp_new (gcry sexp t *r_sexp ,
const void *buffer , size t length , int autodetect)

This is the generic function to create an new S-expression object from its external
representation in buffer of length bytes. On success the result is stored at the address
given by r sexp. With autodetect set to 0, the data in buffer is expected to be in
canonized format, with autodetect set to 1 the parses any of the defined external
formats. If buffer does not hold a valid S-expression an error code is returned and
r sexp set to NULL. Note that the caller is responsible for releasing the newly allocated
S-expression using gcry_sexp_release.

[Function]gcry_error_t gcry_sexp_create (gcry sexp t *r_sexp ,
void *buffer , size t length , int autodetect , void (*freefnc)(void*))

This function is identical to gcry_sexp_new but has an extra argument freefnc, which,
when not set to NULL, is expected to be a function to release the buffer; most likely the
standard free function is used for this argument. This has the effect of transferring
the ownership of buffer to the created object in r sexp. The advantage of using this
function is that Libgcrypt might decide to directly use the provided buffer and thus
avoid extra copying.

[Function]gcry_error_t gcry_sexp_sscan (gcry sexp t *r_sexp ,
size t *erroff , const char *buffer , size t length)

This is another variant of the above functions. It behaves nearly identical but provides
an erroff argument which will receive the offset into the buffer where the parsing
stopped on error.

[Function]gcry_error_t gcry_sexp_build (gcry sexp t *r_sexp ,
size t *erroff , const char *format, ...)

This function creates an internal S-expression from the string template format and
stores it at the address of r sexp. If there is a parsing error, the function returns an

http://theory.lcs.mit.edu/~rivest/sexp.html

60 The Libgcrypt Reference Manual

appropriate error code and stores the offset into format where the parsing stopped in
erroff. The function supports a couple of printf-like formatting characters and expects
arguments for some of these escape sequences right after format. The following format
characters are defined:

‘%m’ The next argument is expected to be of type gcry_mpi_t and a copy of
its value is inserted into the resulting S-expression.

‘%s’ The next argument is expected to be of type char * and that string is
inserted into the resulting S-expression.

‘%d’ The next argument is expected to be of type int and its value is inserted
into the resulting S-expression.

‘%b’ The next argument is expected to be of type int directly followed by an
argument of type char *. This represents a buffer of given length to be
inserted into the resulting regular expression.

No other format characters are defined and would return an error. Note that the
format character ‘%%’ does not exists, because a percent sign is not a valid character
in an S-expression.

[Function]void gcry_sexp_release (gcry sexp t sexp)
Release the S-expression object sexp.

The next 2 functions are used to convert the internal representation back into a regular
external S-expression format and to show the structure for debugging.

[Function]size_t gcry_sexp_sprint (gcry sexp t sexp , int mode ,
char *buffer , size t maxlength)

Copies the S-expression object sexp into buffer using the format specified in mode.
maxlength must be set to the allocated length of buffer. The function returns the
actual length of valid bytes put into buffer or 0 if the provided buffer is too short.
Passing NULL for buffer returns the required length for buffer. For convenience reasons
an extra byte with value 0 is appended to the buffer.
The following formats are supported:

GCRYSEXP_FMT_DEFAULT
Returns a convenient external S-expression representation.

GCRYSEXP_FMT_CANON
Return the S-expression in canonical format.

GCRYSEXP_FMT_BASE64
Not currently supported.

GCRYSEXP_FMT_ADVANCED
Returns the S-expression in advanced format.

[Function]void gcry_sexp_dump (gcry sexp t sexp)
Dumps sexp in a format suitable for debugging to Libgcrypt’s logging stream.

Often canonical encoding is used in the external representation. The following function can
be used to check for valid encoding and to learn the length of the S-expression"

Chapter 10: S-expressions 61

[Function]size_t gcry_sexp_canon_len (const unsigned char *buffer ,
size t length , size t *erroff , int *errcode)

Scan the canonical encoded buffer with implicit length values and return the actual
length this S-expression uses. For a valid S-expression it should never return 0. If
length is not 0, the maximum length to scan is given; this can be used for syntax
checks of data passed from outside. errcode and erroff may both be passed as NULL.

There are a couple of functions to parse S-expressions and retrieve elements:

[Function]gcry_sexp_t gcry_sexp_find_token (const gcry sexp t list ,
const char *token , size t toklen)

Scan the S-expression for a sublist with a type (the car of the list) matching the string
token. If toklen is not 0, the token is assumed to be raw memory of this length. The
function returns a newly allocated S-expression consisting of the found sublist or NULL
when not found.

[Function]int gcry_sexp_length (const gcry sexp t list)
Return the length of the list. For a valid S-expression this should be at least 1.

[Function]gcry_sexp_t gcry_sexp_nth (const gcry sexp t list , int number)
Create and return a new S-expression from the element with index number in list.
Note that the first element has the index 0. If there is no such element, NULL is
returned.

[Function]gcry_sexp_t gcry_sexp_car (const gcry sexp t list)
Create and return a new S-expression from the first element in list; this called the
"type" and should always exist and be a string. NULL is returned in case of a problem.

[Function]gcry_sexp_t gcry_sexp_cdr (const gcry sexp t list)
Create and return a new list form all elements except for the first one. Note that this
function may return an invalid S-expression because it is not guaranteed, that the
type exists and is a string. However, for parsing a complex S-expression it might be
useful for intermediate lists. Returns NULL on error.

[Function]const char * gcry_sexp_nth_data (const gcry sexp t list ,
int number , size t *datalen)

This function is used to get data from a list. A pointer to the actual data with index
number is returned and the length of this data will be stored to datalen. If there
is no data at the given index or the index represents another list, NULL is returned.
Caution: The returned pointer is valid as long as list is not modified or released.

Here is an example on how to extract and print the surname (Meier) from the S-
expression ‘(Name Otto Meier (address Burgplatz 3))’:

size_t len;
const char *name;

name = gcry_sexp_nth_data (list, 2, &len);
printf ("my name is %.*s\n", (int)len, name);

62 The Libgcrypt Reference Manual

[Function]char *gcry_sexp_nth_string (gcry sexp t list , int number)
This function is used to get and convert data from a list. The data is assumed to be a
Nul terminated string. The caller must release this returned value using gcry_free.
If there is no data at the given index, the index represents a list or the value can’t be
converted to a string, NULL is returned.

[Function]gcry_mpi_t gcry_sexp_nth_mpi (gcry sexp t list , int number ,
int mpifmt)

This function is used to get and convert data from a list. This data is assumed to
be an MPI stored in the format described by mpifmt and returned as a standard
Libgcrypt MPI. The caller must release this returned value using gcry_mpi_release.
If there is no data at the given index, the index represents a list or the value can’t be
converted to an MPI, NULL is returned.

Chapter 11: MPI library 63

11 MPI library

Public key cryptography is based on mathematics with large numbers. To implement the
public key functions, a library for handling these large numbers is required. Because of
the general usefulness of such a library, its interface is exposed by Libgcrypt. The imple-
mentation is based on an old release of GNU Multi-Precision Library (GMP) but in the
meantime heavily modified and stripped down to what is required for cryptography. For a
lot of CPUs, high performance assembler implementations of some very low level functions
are used to gain much better performance than with the standard C implementation.

In the context of Libgcrypt and in most other applications, these large numbers are called
MPIs (multi-precision-integers).

11.1 Data types

[Data type]gcry_mpi_t
The gcry_mpi_t type represents an object to hold an MPI.

11.2 Basic functions

To work with MPIs, storage must be allocated and released for the numbers. This can be
done with one of these functions:

[Function]gcry_mpi_t gcry_mpi_new (unsigned int nbits)
Allocate a new MPI object, initialize it to 0 and initially allocate enough memory
for a number of at least nbits. This pre-allocation is only a small performance issue
and not actually necessary because Libgcrypt automatically re-allocates the required
memory.

[Function]gcry_mpi_t gcry_mpi_snew (unsigned int nbits)
This is identical to gcry_mpi_new but allocates the MPI in the so called "secure
memory" which in turn will take care that all derived values will also be stored in this
"secure memory". Use this for highly confidential data like private key parameters.

[Function]gcry_mpi_t gcry_mpi_copy (const gcry mpi t a)
Create a new MPI as the exact copy of a.

[Function]void gcry_mpi_release (gcry mpi t a)
Release the MPI a and free all associated resources. Passing NULL is allowed and
ignored. When a MPI stored in the "secure memory" is released, that memory gets
wiped out immediately.

The simplest operations are used to assign a new value to an MPI:

[Function]gcry_mpi_t gcry_mpi_set (gcry mpi t w , const gcry mpi t u)
Assign the value of u to w and return w. If NULL is passed for w, a new MPI is
allocated, set to the value of u and returned.

64 The Libgcrypt Reference Manual

[Function]gcry_mpi_t gcry_mpi_set_ui (gcry mpi t w , unsigned long u)
Assign the value of u to w and return w. If NULL is passed for w, a new MPI is
allocated, set to the value of u and returned. This function takes an unsigned int
as type for u and thus it is only possible to set w to small values (usually up to the
word size of the CPU).

[Function]void gcry_mpi_swap (gcry mpi t a , gcry mpi t b)
Swap the values of a and b.

11.3 MPI formats

The following functions are used to convert between an external representation of an MPI
and the internal one of Libgcrypt.

[Function]gcry_error_t gcry_mpi_scan (gcry mpi t *r_mpi ,
enum gcry mpi format format , const unsigned char *buffer , size t buflen ,
size t *nscanned)

Convert the external representation of an integer stored in buffer with a length of
buflen into a newly created MPI returned which will be stored at the address of
r mpi. For certain formats the length argument is not required and should be passed
as 0. After a successful operation the variable nscanned receives the number of bytes
actually scanned unless nscanned was given as NULL. format describes the format of
the MPI as stored in buffer:

GCRYMPI_FMT_STD
2-complement stored without a length header.

GCRYMPI_FMT_PGP
As used by OpenPGP (only defined as unsigned). This is basically
GCRYMPI_FMT_STD with a 2 byte big endian length header.

GCRYMPI_FMT_SSH
As used in the Secure Shell protocol. This is GCRYMPI_FMT_STD with a 4
byte big endian header.

GCRYMPI_FMT_HEX
Stored as a C style string with each byte of the MPI encoded as 2 hex
digits. When using this format, buflen must be zero.

GCRYMPI_FMT_USG
Simple unsigned integer.

Note that all of the above formats store the integer in big-endian format (MSB first).

[Function]gcry_error_t gcry_mpi_print (enum gcry mpi format format ,
unsigned char *buffer , size t buflen , size t *nwritten ,
const gcry mpi t a)

Convert the MPI a into an external representation described by format (see above)
and store it in the provided buffer which has a usable length of at least the buflen
bytes. If nwritten is not NULL, it will receive the number of bytes actually stored in
buffer after a successful operation.

Chapter 11: MPI library 65

[Function]gcry_error_t gcry_mpi_aprint (enum gcry mpi format format ,
unsigned char **buffer , size t *nbytes , const gcry mpi t a)

Convert the MPI a into an external representation described by format (see above)
and store it in a newly allocated buffer which address will be stored in the variable
buffer points to. The number of bytes stored in this buffer will be stored in the
variable nbytes points to, unless nbytes is NULL.

[Function]void gcry_mpi_dump (const gcry mpi t a)
Dump the value of a in a format suitable for debugging to Libgcrypt’s logging stream.
Note that one leading space but no trailing space or linefeed will be printed. It is
okay to pass NULL for a.

11.4 Calculations

Basic arithmetic operations:

[Function]void gcry_mpi_add (gcry mpi t w , gcry mpi t u , gcry mpi t v)
w = u + v .

[Function]void gcry_mpi_add_ui (gcry mpi t w , gcry mpi t u , unsigned long v)
w = u + v . Note that v is an unsigned integer.

[Function]void gcry_mpi_addm (gcry mpi t w , gcry mpi t u , gcry mpi t v ,
gcry mpi t m)

w = u + v mod m.

[Function]void gcry_mpi_sub (gcry mpi t w , gcry mpi t u , gcry mpi t v)
w = u− v .

[Function]void gcry_mpi_sub_ui (gcry mpi t w , gcry mpi t u , unsigned long v)
w = u− v . v is an unsigned integer.

[Function]void gcry_mpi_subm (gcry mpi t w , gcry mpi t u , gcry mpi t v ,
gcry mpi t m)

w = u− v mod m.

[Function]void gcry_mpi_mul (gcry mpi t w , gcry mpi t u , gcry mpi t v)
w = u ∗ v .

[Function]void gcry_mpi_mul_ui (gcry mpi t w , gcry mpi t u , unsigned long v)
w = u ∗ v . v is an unsigned integer.

[Function]void gcry_mpi_mulm (gcry mpi t w , gcry mpi t u , gcry mpi t v ,
gcry mpi t m)

w = u ∗ v mod m.

[Function]void gcry_mpi_mul_2exp (gcry mpi t w , gcry mpi t u ,
unsigned long e)

w = u ∗ 2e.

66 The Libgcrypt Reference Manual

[Function]void gcry_mpi_div (gcry mpi t q , gcry mpi t r ,
gcry mpi t dividend , gcry mpi t divisor , int round)

q = dividend/divisor, r = dividend mod divisor. q and r may be passed as NULL.
round should be negative or 0.

[Function]void gcry_mpi_mod (gcry mpi t r , gcry mpi t dividend ,
gcry mpi t divisor)

r = dividend mod divisor.

[Function]void gcry_mpi_powm (gcry mpi t w , const gcry mpi t b ,
const gcry mpi t e , const gcry mpi t m)

w = be mod m.

[Function]int gcry_mpi_gcd (gcry mpi t g , gcry mpi t a , gcry mpi t b)
Set g to the greatest common divisor of a and b. Return true if the g is 1.

[Function]int gcry_mpi_invm (gcry mpi t x , gcry mpi t a , gcry mpi t m)
Set x to the multiplicative inverse of a mod m. Return true if the inverse exists.

11.5 Comparisons

The next 2 functions are used to compare MPIs:

[Function]int gcry_mpi_cmp (const gcry mpi t u , const gcry mpi t v)
Compare the big integer number u and v returning 0 for equality, a positive value for
u > v and a negative for u < v.

[Function]int gcry_mpi_cmp_ui (const gcry mpi t u , unsigned long v)
Compare the big integer number u with the unsigned integer v returning 0 for equality,
a positive value for u > v and a negative for u < v.

11.6 Bit manipulations

There are a couple of functions to get information on arbitrary bits in an MPI and to set
or clear them:

[Function]unsigned int gcry_mpi_get_nbits (gcry mpi t a)
Return the number of bits required to represent a.

[Function]int gcry_mpi_test_bit (gcry mpi t a , unsigned int n)
Return true if bit number n (counting from 0) is set in a.

[Function]void gcry_mpi_set_bit (gcry mpi t a , unsigned int n)
Set bit number n in a.

[Function]void gcry_mpi_clear_bit (gcry mpi t a , unsigned int n)
Clear bit number n in a.

[Function]void gcry_mpi_set_highbit (gcry mpi t a , unsigned int n)
Set bit number n in a and clear all bits greater than n.

Chapter 11: MPI library 67

[Function]void gcry_mpi_clear_highbit (gcry mpi t a , unsigned int n)
Clear bit number n in a and all bits greater than n.

[Function]void gcry_mpi_rshift (gcry mpi t x , gcry mpi t a , unsigned int n)
Shift the value of a by n bits to the right and store the result in x.

11.7 Miscellaneous

[Function]gcry_mpi_t gcry_mpi_set_opaque (gcry mpi t a , void *p ,
unsigned int nbits)

Store nbits of the value p points to in a and mark a as an opaque value (i.e. an value
that can’t be used for any math calculation and is only used to store an arbitrary bit
pattern in a).
WARNING: Never use an opaque MPI for actual math operations. The only valid
functions are gcry mpi get opaque and gcry mpi release. Use gcry mpi scan to con-
vert a string of arbitrary bytes into an MPI.

[Function]void * gcry_mpi_get_opaque (gcry mpi t a , unsigned int *nbits)
Return a pointer to an opaque value stored in a and return its size in nbits. Note
that the returned pointer is still owned by a and that the function should never be
used for an non-opaque MPI.

[Function]void gcry_mpi_set_flag (gcry mpi t a , enum gcry mpi flag flag)
Set the flag for the MPI a. Currently only the flag GCRYMPI_FLAG_SECURE is allowed
to convert a into an MPI stored in "secure memory".

[Function]void gcry_mpi_clear_flag (gcry mpi t a , enum gcry mpi flag flag)
Clear flag for the big integer a. Note that this function is currently useless as no flags
are allowed.

[Function]int gcry_mpi_get_flag (gcry mpi t a , enum gcry mpi flag flag)
Return true when the flag is set for a.

[Function]void gcry_mpi_randomize (gcry mpi t w , unsigned int nbits ,
enum gcry random level level)

Set the big integer w to a random value of nbits, using random data quality of level
level. In case nbits is not a multiple of a byte, nbits is rounded up to the next byte
boundary.

68 The Libgcrypt Reference Manual

Chapter 12: Prime numbers 69

12 Prime numbers

12.1 Generation

[Function]gcry_error_t gcry_prime_generate (gcry mpi t *prime,unsigned int
prime_bits, unsigned int factor_bits, gcry mpi t **factors,
gcry prime check func t cb_func, void *cb_arg, gcry random level t
random_level, unsigned int flags)

Generate a new prime number of prime bits bits and store it in prime. If factor bits
is non-zero, one of the prime factors of (prime - 1) / 2 must be factor bits bits long.
If factors is non-zero, allocate a new, NULL-terminated array holding the prime factors
and store it in factors. flags might be used to influence the prime number generation
process.

[Function]gcry_prime_group_generator (gcry_mpi_t *r_g,
gcry mpi t prime, gcry mpi t *factors, gcry mpi t start g)
Find a generator for prime where the factorization of (prime-1) is in the NULL termi-
nated array factors. Return the generator as a newly allocated MPI in r g. If start g
is not NULL, use this as the start for the search.

[Function]void gcry_prime_release_factors (gcry mpi t *factors)
Convenience function to release the factors array.

12.2 Checking

[Function]gcry_error_t gcry_prime_check (gcry mpi t p, unsigned int flags)
Check wether the number p is prime. Returns zero in case p is indeed a prime,
returns GPG_ERR_NO_PRIME in case p is not a prime and a different error code in case
something went horribly wrong.

70 The Libgcrypt Reference Manual

Chapter 13: Utilities 71

13 Utilities

13.1 Memory allocation

[Function]void *gcry_malloc (size t n)
This function tries to allocate n bytes of memory. On success it returns a pointer to
the memory area, in an out-of-core condition, it returns NULL.

[Function]void *gcry_malloc_secure (size t n)
Like gcry_malloc, but uses secure memory.

[Function]void *gcry_calloc (size t n)
This function tries to allocate n bytes of cleared memory (i.e. memory that is ini-
tialized with zero bytes). On success it returns a pointer to the memory area, in an
out-of-core condition, it returns NULL.

[Function]void *gcry_calloc_secure (size t n)
Like gcry_calloc, but uses secure memory.

[Function]void *gcry_realloc (void *p, size t n)
This function tries to resize the memory area pointed to by p to n bytes. On success
it returns a pointer to the new memory area, in an out-of-core condition, it returns
NULL. Depending on whether the memory pointed to by p is secure memory or not,
gcry realloc tries to use secure memory as well.

[Function]void gcry_free (void *p)
Release the memory area pointed to by p.

72 The Libgcrypt Reference Manual

Appendix A: GNU LESSER GENERAL PUBLIC LICENSE 73

Appendix A GNU LESSER GENERAL PUBLIC
LICENSE

Version 2.1, February 1999
Copyright c© 1991, 1999 Free Software Foundation, Inc.
59 Temple Place – Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

A.0.1 Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated
software—typically libraries—of the Free Software Foundation and other authors who decide
to use it. You can use it too, but we suggest you first think carefully about whether this
license or the ordinary General Public License is the better strategy to use in any particular
case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our
General Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish); that you receive source code
or can get it if you want it; that you can change the software and use pieces of it in new
free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for
the free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program.
We wish to make sure that a company cannot effectively restrict the users of a free program

74 The Libgcrypt Reference Manual

by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library,
the combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License permits
more lax criteria for linking other code with the library.

We call this license the Lesser General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest
possible use of a certain library, so that it becomes a de-facto standard. To achieve this,
non-free programs must be allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this case, there is little to
gain by limiting the free library to free software only, so we use the Lesser General Public
License.

In other cases, permission to use a particular library in non-free programs enables a
greater number of people to use a large body of free software. For example, permission to
use the GNU C Library in non-free programs enables many more people to use the whole
GNU operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it
does ensure that the user of a program that is linked with the Library has the freedom and
the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a “work based on the library” and a “work that
uses the library”. The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

A.0.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains
a notice placed by the copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public License (also called “this
License”). Each licensee is addressed as “you”.
A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

Appendix A: GNU LESSER GENERAL PUBLIC LICENSE 75

The “Library”, below, refers to any such software library or work which has been
distributed under these terms. A “work based on the Library” means either the Library
or any derivative work under copyright law: that is to say, a work containing the
Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)
“Source code” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is
not restricted, and output from such a program is covered only if its contents constitute
a work based on the Library (independent of the use of the Library in a tool for writing
it). Whether that is true depends on what the Library does and what the program
that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. The modified work must itself be a software library.
b. You must cause the files modified to carry prominent notices stating that you

changed the files and the date of any change.
c. You must cause the whole of the work to be licensed at no charge to all third

parties under the terms of this License.
d. If a facility in the modified Library refers to a function or a table of data to

be supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.
(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must
still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered indepen-
dent and separate works in themselves, then this License, and its terms, do not apply

76 The Libgcrypt Reference Manual

to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Library, the distri-
bution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who
wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled
to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a “work that
uses the Library”. Such a work, in isolation, is not a derivative work of the Library,
and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather
than a “work that uses the library”. The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.

Appendix A: GNU LESSER GENERAL PUBLIC LICENSE 77

If such an object file uses only numerical parameters, data structure layouts and ac-
cessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still
fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also
fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that
uses the Library” with the Library to produce a work containing portions of the Li-
brary, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.
You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must supply
a copy of this License. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one of these things:
a. Accompany the work with the complete corresponding machine-readable source

code for the Library including whatever changes were used in the work (which must
be distributed under Sections 1 and 2 above); and, if the work is an executable
linked with the Library, with the complete machine-readable “work that uses the
Library”, as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions
files in the Library will not necessarily be able to recompile the application to use
the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present
on the user’s computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

e. Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include
any data and utility programs needed for reproducing the executable from it. However,
as a special exception, the materials to be distributed need not include anything that
is normally distributed (in either source or binary form) with the major components

78 The Libgcrypt Reference Manual

(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other pro-
prietary libraries that do not normally accompany the operating system. Such a con-
tradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in
a single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with
or modify the Library subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Library.

Appendix A: GNU LESSER GENERAL PUBLIC LICENSE 79

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free soft-
ware and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

80 The Libgcrypt Reference Manual

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix A: GNU LESSER GENERAL PUBLIC LICENSE 81

A.0.3 How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can
do so by permitting redistribution under these terms (or, alternatively, under the terms of
the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the full notice
is found.

one line to give the library’s name and an idea of what it does.

Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307,

USA.

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your school, if any,

to sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

82 The Libgcrypt Reference Manual

Appendix B: GNU GENERAL PUBLIC LICENSE 83

Appendix B GNU GENERAL PUBLIC LICENSE

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place – Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

B.0.1 Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

B.0.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General

84 The Libgcrypt Reference Manual

Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

Appendix B: GNU GENERAL PUBLIC LICENSE 85

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose

86 The Libgcrypt Reference Manual

any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two

Appendix B: GNU GENERAL PUBLIC LICENSE 87

goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

88 The Libgcrypt Reference Manual

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along

with this program; if not, write to the Free Software Foundation, Inc.,

59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Concept Index 89

Concept Index

E
error codes . 10

error codes, list of . 11, 12

error codes, printing of . 14

error sources . 10

error sources, printing of . 14

error strings . 14

error values . 10

error values, printing of . 14

G
GPL, GNU General Public License 83

L
LGPL, Lesser General Public License 73

90 The Libgcrypt Reference Manual

Function and Data Index 91

Function and Data Index

(
(gcry_mpi_t . 69

*
* . 57
*gcry_calloc . 71
*gcry_calloc_secure . 71
*gcry_malloc . 71
*gcry_malloc_secure . 71
*gcry_realloc . 71
*gcry_sexp_nth_string . 62

A
AM_PATH_LIBGCRYPT . 4

C
char . 4, 26, 31, 32

E
enum . 57

G
gcry_ac_close . 50
gcry_ac_data_clear . 48
gcry_ac_data_copy . 48
gcry_ac_data_decode . 54
gcry_ac_data_decrypt . 53
gcry_ac_data_decrypt_scheme 54
gcry_ac_data_destroy . 48
gcry_ac_data_encode . 53
gcry_ac_data_encrypt . 52
gcry_ac_data_encrypt_scheme 54
gcry_ac_data_from_sexp . 49
gcry_ac_data_get_index . 48
gcry_ac_data_get_name . 48
gcry_ac_data_new . 48
gcry_ac_data_set . 48
gcry_ac_data_sign . 53
gcry_ac_data_sign_scheme 54
gcry_ac_data_t . 47
gcry_ac_data_to_sexp . 48
gcry_ac_data_verify . 53
gcry_ac_data_verify_scheme 54
gcry_ac_id_t . 47
gcry_ac_id_to_name . 55
gcry_ac_io_init . 49
gcry_ac_io_init_va . 49
gcry_ac_io_t . 49
gcry_ac_key_data_get . 52

gcry_ac_key_destroy . 52
gcry_ac_key_get_grip . 52
gcry_ac_key_get_nbits . 52
gcry_ac_key_init . 51
gcry_ac_key_pair_destroy 52
gcry_ac_key_pair_extract 52
gcry_ac_key_pair_generate 51
gcry_ac_key_pair_t . 50
gcry_ac_key_t . 50
gcry_ac_key_test . 52
gcry_ac_key_type_t . 50
gcry_ac_name_to_id . 55
gcry_ac_open . 50
gcry_cipher_algo_info . 25
gcry_cipher_close . 23
gcry_cipher_ctl . 25
gcry_cipher_decrypt . 24
gcry_cipher_decrypt_t . 21
gcry_cipher_encrypt . 24
gcry_cipher_encrypt_t . 21
gcry_cipher_info . 25
gcry_cipher_list . 22
gcry_cipher_map_name . 26
gcry_cipher_mode_from_oid 26
gcry_cipher_oid_spec_t . 21
gcry_cipher_open . 23
gcry_cipher_register . 22
gcry_cipher_reset . 24
gcry_cipher_setctr . 24
gcry_cipher_setiv . 24
gcry_cipher_setkey . 23
gcry_cipher_setkey_t . 21
gcry_cipher_spec_t . 20
gcry_cipher_stdecrypt_t . 22
gcry_cipher_stencrypt_t . 21
gcry_cipher_sync . 25
gcry_cipher_unregister . 22
gcry_control . 7
gcry_create_nonce . 57
gcry_err_code . 10
gcry_err_code_from_errno 11
gcry_err_code_t . 10
gcry_err_code_to_errno . 11
gcry_err_make . 10
gcry_err_make_from_errno 11
gcry_err_source . 10
gcry_err_source_t . 10
gcry_error . 11
gcry_error_from_errno . 11
gcry_error_t . 10
gcry_free . 71
gcry_handler_alloc_t . 16
gcry_handler_error_t . 16
gcry_handler_free_t . 16
gcry_handler_log_t . 17

92 The Libgcrypt Reference Manual

gcry_handler_no_mem_t . 16
gcry_handler_progress_t . 15
gcry_handler_realloc_t . 16
gcry_handler_secure_check_t 16
gcry_md_close . 30
gcry_md_copy . 31
gcry_md_debug . 33
gcry_md_enable . 30
gcry_md_final . 31
gcry_md_final_t . 29
gcry_md_get_algo . 33
gcry_md_get_asnoid . 32
gcry_md_hash_buffer . 32
gcry_md_init_t . 29
gcry_md_is_enabled . 33
gcry_md_is_secure . 33
gcry_md_list . 29
gcry_md_map_name . 32
gcry_md_oid_spec_t . 29
gcry_md_open . 30
gcry_md_putc . 31
gcry_md_read_t . 29
gcry_md_register . 29
gcry_md_reset . 31
gcry_md_setkey . 30
gcry_md_spec_t . 28
gcry_md_start_debug . 33
gcry_md_stop_debug . 33
gcry_md_test_algo . 32
gcry_md_unregister . 29
gcry_md_write . 31
gcry_md_write_t . 29
gcry_module_t . 9
gcry_mpi_add . 65
gcry_mpi_add_ui . 65
gcry_mpi_addm . 65
gcry_mpi_aprint . 65
gcry_mpi_clear_bit . 66
gcry_mpi_clear_flag . 67
gcry_mpi_clear_highbit . 67
gcry_mpi_cmp . 66
gcry_mpi_cmp_ui . 66
gcry_mpi_copy . 63
gcry_mpi_div . 66
gcry_mpi_dump . 65
gcry_mpi_gcd . 66
gcry_mpi_get_flag . 67
gcry_mpi_get_nbits . 66
gcry_mpi_get_opaque . 67
gcry_mpi_invm . 66
gcry_mpi_mod . 66
gcry_mpi_mul . 65
gcry_mpi_mul_2exp . 65
gcry_mpi_mul_ui . 65
gcry_mpi_mulm . 65
gcry_mpi_new . 63
gcry_mpi_powm . 66
gcry_mpi_print . 64

gcry_mpi_randomize . 67
gcry_mpi_release . 63
gcry_mpi_rshift . 67
gcry_mpi_scan . 64
gcry_mpi_set . 63
gcry_mpi_set_bit . 66
gcry_mpi_set_flag . 67
gcry_mpi_set_highbit . 66
gcry_mpi_set_opaque . 67
gcry_mpi_set_ui . 64
gcry_mpi_snew . 63
gcry_mpi_sub . 65
gcry_mpi_sub_ui . 65
gcry_mpi_subm . 65
gcry_mpi_swap . 64
gcry_mpi_t . 63
gcry_mpi_test_bit . 66
gcry_pk_algo_info . 43
gcry_pk_algo_name . 43
gcry_pk_check_secret_key_t 39
gcry_pk_ctl . 44
gcry_pk_decrypt . 41
gcry_pk_decrypt_t . 39
gcry_pk_encrypt . 40
gcry_pk_encrypt_t . 39
gcry_pk_generate_t . 39
gcry_pk_genkey . 45
gcry_pk_get_keygrip . 43
gcry_pk_get_nbits . 43
gcry_pk_get_nbits_t . 39
gcry_pk_list . 40
gcry_pk_map_name . 43
gcry_pk_register . 40
gcry_pk_sign . 42
gcry_pk_sign_t . 39
gcry_pk_spec_t . 38
gcry_pk_test_algo . 43
gcry_pk_testkey . 43
gcry_pk_unregister . 40
gcry_pk_verify . 43
gcry_pk_verify_t . 39
gcry_prime_check . 69
gcry_prime_generate . 69
gcry_prime_release_factors 69
gcry_randomize . 57
gcry_set_allocation_handler 16
gcry_set_fatalerror_handler 16
gcry_set_log_handler . 17
gcry_set_outofcore_handler 16
gcry_set_progress_handler 15
gcry_sexp_build . 59
gcry_sexp_canon_len . 61
gcry_sexp_car . 61
gcry_sexp_cdr . 61
gcry_sexp_create . 59
gcry_sexp_dump . 60
gcry_sexp_find_token . 61
gcry_sexp_length . 61

Function and Data Index 93

gcry_sexp_new . 59
gcry_sexp_nth . 61
gcry_sexp_nth_data . 61
gcry_sexp_nth_mpi . 62
gcry_sexp_release . 60
gcry_sexp_sprint . 60
gcry_sexp_sscan . 59

gcry_sexp_t . 59
gcry_strerror . 14
gcry_strsource . 14

I
int . 32, 48

94 The Libgcrypt Reference Manual

	Introduction
	Getting Started
	Features
	Overview

	Preparation
	Header
	Building sources
	Building sources using Automake
	Initializing the library
	Multi-Threading

	Generalities
	Controlling the library
	Modules
	Error Handling
	Error Values
	Error Sources
	Error Codes
	Error Strings

	Handler Functions
	Progress handler
	Allocation handler
	Error handler
	Logging handler

	Symmetric cryptography
	Available ciphers
	Cipher modules
	Available cipher modes
	Working with cipher handles
	General cipher functions

	Hashing
	Available hash algorithms
	Hash algorithm modules
	Working with hash algorithms

	Public Key cryptography (I)
	Available algorithms
	Used S-expressions
	RSA key parameters
	DSA key parameters
	ECC key parameters

	Public key modules
	Cryptographic Functions
	General public-key related Functions

	Public Key cryptography (II)
	Available asymmetric algorithms
	Working with sets of data
	Working with IO objects
	Working with handles
	Working with keys
	Using cryptographic functions
	Handle-independent functions

	Random Numbers
	Quality of random numbers
	Retrieving random numbers

	S-expressions
	Data types for S-expressions
	Working with S-expressions

	MPI library
	Data types
	Basic functions
	MPI formats
	Calculations
	Comparisons
	Bit manipulations
	Miscellaneous

	Prime numbers
	Generation
	Checking

	Utilities
	Memory allocation

	GNU LESSER GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Libraries
	GNU GENERAL PUBLIC LICENSE
	Preamble

	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs
	Concept Index
	Function and Data Index

